The Lowly Bit

- Chemistry has its molecules.
- Physics has its strings.
- Math has its sets. \(\mathbb{N}_i := \{1, 2, \ldots, i\} \subset \mathbb{N} \)
- Computer science has its bits.
- They are the smallest unit of information.
 - True (1, on)
 - False (0, off)
What’s a “Bit”?

• Like “craptacular” (crap + spectacular) or “crumbelievable” (crumble + unbelievable); it is a portmanteau. More?

• It’s a contraction of “binary digit”, used by Claude Shannon, attributed to John Tukey.

• In our decimal (base ten) number system, a digit can be any of the ten values $0,\ldots,9$.

• In the binary (base 2) number system, a digit can be any of the two values 0 or 1.

Why a Bit?

• Bits have the property of being...

 • simple: There’s no smaller discrete distinction to be made.

 • powerful: sequences of bits can represent seemingly anything!
0/1, Black/White

- Escher created spectacular images with just a single distinction.
- “...God divided the light from the darkness.” (Genesis Chapter 1, Line 4)
- Ying and Yang

Bits Abound

- Nearly everything has gone digital.
- Digital sound: groups of bits represent the acoustic intensity at discrete time points.
- Digital images: groups of bits represent the color at each particular discrete image location: pixel.
But There Are Lots of Them

- iPod: 60Gb. 1Gb = one billion bytes, each of which is 8 bits.
- Format uses 128 Kbps (kilobits or 1000 bits per second of sound).
- So, 62,500 minutes of sound or 15,000 songs at 4 minutes per song.
- Screen: 320x240 pixels, each of which stores 1 byte each of R,G,B intensity (24 bits). That’s 76,800 pixels and 1.8M bits.
- At 30 frames per sec., that’s 55.3 million bits per second or 144 min. of (quiet) video.

“Regular” Algebra

- Variables stand for numbers.

 - \(x = 3, \ p = \frac{22}{7}, \ a = -2 \)

- Binary operations (two numbers in, one out)

 - addition: \(2 + 3 = 5 \); subtraction: \(1 - 4 = -3 \)

 - multiplication: \(\frac{2}{3} \times \frac{7}{4} = \frac{7}{6} \)

- Unary operations (one number in, one out)

 - negation: \(-(11) = -11 \), square root: \(\sqrt{16} = 4 \)
Boolean Algebra

• Variables stand for bits (True/False).
 • x = True, p = False

• Binary operations (two bits in, one out)
 • and ("conjunction"): True and False = False
 • or ("disjunction"): True or False = True

• Unary operations (one number in, one out)
 • not ("negation"): not (False) = True

Follow the Rules #1

• When is it ok to be in an R movie? You are 17-or-older or you have an adult guardian with you.

 • x: Person is 17 or older.
 • y: Person is accompanied by an adult guardian.
 • x or y: Person can see an R-rated movie.
"OR" Examples

- Bill is 22 and is seeing the movie with his stepdad.
 - $x = \text{True}, \ y = \text{True}, \ x \ or \ y = \text{True}$
- Samantha is 17 and is seeing the movie alone.
 - $x = \text{True}, \ y = \text{False}, \ x \ or \ y = \text{True}$
- Seth is 16 and is there with both of his parents.
 - $x = \text{False}, \ y = \text{True}, \ x \ or \ y = \text{True}$
- Jessica is 13 and is there with friends from school.
 - $x = \text{False}, \ y = \text{False}, \ x \ or \ y = \text{False}$

Follow the Rules #2

All vehicles parked on University property must be registered \textbf{and} display a valid Rutgers permit.

- x: Car is registered.
- y: Car displays a valid Rutgers permit.
- x and y: Car can be parked at Rutgers.
“AND” Examples

• Bill’s car is registered and displays a valid permit.
 • $x = True, y = True, x \text{ and } y = True$

• Samantha’s is registered, but the permit fell off.
 • $x = True, y = False, x \text{ and } y = False$

• Al’s registration expired, but his permit is still ok.
 • $x = False, y = True, x \text{ and } y = False$

• Jessica is visiting with no registration or permit.
 • $x = False, y = False, x \text{ and } y = False$

Follow the Rules #3

• It is not allowed by federal law to provide tobacco products to persons under 18 years of age.

 • x: Person is under 18.

 • not x: Person can buy tobacco
“NOT” Examples

• Samantha is 17 and is buying cigarettes.
 • $x = \text{True}, \text{not } x = \text{False}$

• Seth is 21 and purchased a cigar.
 • $x = \text{False}, \text{not } x = \text{True}$

And, Or, Not

• The most important logical operations are and, or, and not.
 • $x \text{ and } y$ is True only if both x and y are True.
 • $x \text{ or } y$ is True only if either x or y are True.
 • $\text{not } x$ is True only if x is False.
 • A lot like their English meanings, but unambiguous.
Relating And/Or/Not

- **Note**: not (not x) = x
- **DeMorgan's Law**: not flips ands and ors
 - not (x and y) = (not x) or (not y)
 - not (x or y) = (not x) and (not y)
- “No person shall be a Senator who shall not have attained to the age of thirty years, and been nine years a citizen of the United States...” not (not x and y) = x or not y

DeMorgan Example

- “No state shall ... make anything but gold and silver coin a tender in payment of debts ... or grant any title of nobility.” (US Constitution, Article I, Section 10.)
- x: State makes non coins legal tender.
- y: State grants a title of nobility.
- not(x or y): State satisfies the clause. Same as (not x) and (not y) (Both must be avoided.)
Implementing Logic

- Clearly, our brains can handle these sorts of expressions.
- But, can we automate them?
- Yes, obviously, but let’s start with a really simple way to do it before we move on to fancier stuff.

Simple Circuit

Switch A is either on or off making the light either on or off: lightOn=A.

Symbols:
- battery
- switch
- bulb
- ground (completes circuit)
Multiple Switches

Switches A and B are wired in parallel: either will light the bulb.

Switches C and D are wired in series: both are needed to light the bulb.

Multiple Circuits

Special switches allow a single mechanical switch to control two circuits simultaneously.
miniNim

- There’s a pile of objects, say 10.
- On her turn, a player can take away either one or two objects.
- Players alternate.
- The player to take the last object wins.

Nim5Bot: Game Tree

- Let’s start by considering the 5-object version.
- We’ll design a strategy for the computer “C” to beat the user “U”.

```
5 left
  takeOne  takeTwo
3 left
  takeOne  takeTwo
2 left
  takeOne  takeTwo
  C       C       C       U
```
Further Considerations

• To win miniNim: if possible, remove pieces to leave opponent with a multiple of 3.

• Why does it work? We win if opponent has 3; if opponent has a multiple of 3, can leave her with next smaller multiple of 3.

• What if goal is to not take the last object?

• What if we can take 1, 2, or 3 objects per round? 2 or 3? 1 or 3? Is there a general rule?

Complete Nim5 Logic

• fiveLeft = True
• threeLeft = takeOne₁
• twoLeft = takeTwo₁
• C-Win = (threeLeft and (takeOne₂ or takeTwo₂)) or (twoLeft and takeOne₂)
• U-Win = twoLeft and takeTwo₂
Nim5 Circuit

Let’s Play!

- http://www.cs.rutgers.edu/~mlittman/courses/cs105-06b/python/
- nim5.py
- nim10.py
Complete Nim10 Logic

tenLeft[1] = True
eightLeft[2] = takeOneSwitch[1]
sixLeft[2] = takeTwoSwitch[1]
movetwo = takeOneSwitch[2] or takeTwoSwitch[2]
movethree = takeOneSwitch[3] or takeTwoSwitch[3]
winFourA = threeLeft[3] and movethree
winFourB = fourLeft[3] and takeTwoSwitch[3]
IWin[4] = winFourA or winFourB
movefour = takeOneSwitch[4] or takeTwoSwitch[4]
winFiveA = twoLeft[4] and takeOneSwitch[4]
winFiveB = threeLeft[4] and movefour
IWin[5] = winFiveA or winFiveB

What a Headache!

• I tried to create the circuit diagram for Nim10 and couldn’t do it. Why?

• Since some switches are used in multiple places, needs more than a double-throw switch.

• Since values are reused, hard to keep track of different circuits.

• Appears to need a separate circuit for each output: Gets too complex too fast.
Need a New Approach

• Let’s consider an alternate way of building “and” and “or” logic.
• Makes simple things more complex.
• Makes complex thinks much simpler!
• That’s a tradeoff we can deal with.

Switch Switcher

Before, we used switches to control the flow of current; now, we will use current (via electromagnetism) to control switches (which control the flow of current)!
Relay Circuit: A=F, B=F

A = False
B = False
lightOn = False

Relay Circuit: A=F, B=T

A = False
B = True
lightOn = True
Relay Circuit: A=T, B=F

- **A = True**
- **B = False**
- **lightOn = True**

Relay Circuit: A=T, B=T

- **A = True**
- **B = True**
- **lightOn = True**
What Is This Thing?

A	B	C
False | False | False
False | True | True
True | False | True
True | True | True

A. “or” gate
B. “and” gate
C. “not” gate
D. none of these

It’s an “or gate”: used to compute the “or” of two inputs.
And One For “Not”

- We saw several slides ago that a single relay “inverts” its input signal, turning a True to a False and vice versa.
- These output summaries are known as “truth tables”.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Abstraction: The Black Box

- Our new relayed-based “or” and “not” gates take current, not switches, as input.
- As a result, they are easier to chain together.
- The original switch-based scheme did not support this kind of modularity.
A Third Black Box

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

It’s an “and gate”: a black box built out of other black boxes!

Simplified Nim5 Circuit
How to Make a Gate

- switches/relays
- hydraulic valves
- tinkertoys
- silicon: semiconductors/transistors
- soap bubble
- DNA
- quantum material
- optics
- nanotubes
- neurons
- dominoes
- legos/marbles

Movie
Release bottom row first
Could It Work?

- My domino “or” gate requires 24 dominoes.
- The first Pentium processor had 3.3M transistors, or roughly 800K gates.
- So, perhaps 19M dominoes needed.
- World record for domino toppling: 4M.
- Oh, and the Pentium did its computations 60M times a second, whereas dominoes might require a week to set up once.