Another name for the lecture is “Google II”.

Sorting is a great topic in CS:
- relatively simple
- extremely important
- illustrates lots of different algorithms and analysis techniques

There’s more than one way to skin a cat.
Google...

- Last time, I said Google does its thing in a couple of very significant steps:

I. Collect pages from the web (graph search).

II. Index them.

III. Respond to queries.

Three Pages of Words
What Can We Do?

• All the information is there, and we can sift through it.

• But, it’s slow and error-prone to skim through every page every time we want to find something.

• If there are N words (total) on the web pages, how long would it take to sift through them each time? (Use “big O” notation.)

• How can we organize the data to simplify?

Sort, Remove Duplicates

4 a 9 course 3 frames 9 http 3 no 4 python 9 there
9 a 4 courses 3 frameset 9 i 3 noframes 3 noresize 3 this
4 add 9 courses 9 from 9 in 9 include 9 not
4 address 4 cs 9 google 9 googleblackout4 index 4 of
9 and 9 cs 9 googletest 9 index 9 insights
9 any 9 did 9 great 9 is
4 apache 4 differences 9 other
9 at 4 directory 4 h 9 old
9 b 9 discovery 9 h 9 on
9 b 4 doctype 9 has 9 own
3 babes 9 documents 3 head 9 is
3 banner 9 does 4 head 9 its
3 body 3 doesn 3 header
4 body 4 dtd 9 header 9 january
3 browser 4 edu 9 history 3 left
3 but 9 edu 9 homepage
4 c 4 en 9 how 9 match
3 cols 4 exception 9 href 4 ml
9 computer 9 explicitly 9 href 4 mllttman
9 concatenating 4 final 3 htm 9 mllttman
9 concoced 9 find 3 html 9 primary
9 consists 9 for 4 html 9 public
3 contents 3 frame 9 html 4 nim
4 at 4 directory 4 h 9 is
9 at 9 discovery 9 h 9 its
9 b 9 discovery 9 h 9 it
9 b 4 doctype 9 has 9 january
3 babes 9 documents 3 head 9 is
3 banner 9 does 4 head 9 its
3 body 3 doesn 3 header
4 body 4 dtd 9 header 9 january
3 browser 4 edu 9 history 3 left
3 but 9 edu 9 homepage
4 c 4 en 9 how 9 match
3 cols 4 exception 9 href 4 ml
9 computer 9 explicitly 9 href 4 mllttman
9 concatenating 4 final 3 htm 9 mllttman
9 concoced 9 find 3 html 9 primary
9 consists 9 for 4 html 9 public
3 contents 3 frame 9 html 4 nim
Selection Sort

- Idea is quite simple. We go through the list one item at a time.
- We keep track of the smallest item we’ve found.
- When we’re through the list, we pull the smallest item out and add it to a list of sorted items.
- We repeat until all the items have been removed.

Code

```python
def Selection(l):
    sorted = []
    while len(l) > 0:
        (smallest, rest) = findSmallest(l)
        sorted = sorted + [smallest]
        l = rest
    return sorted

def findSmallest(l):
    smallest = l[0]
    rest = []
    for i in range(1,len(l)):
        if l[i] < smallest:
            rest = rest + [smallest]
            smallest = l[i]
        else:
            rest = rest + [l[i]]
    return (smallest, rest)
```
Selection Sort Analysis

• How many comparisons does Selection Sort do in the worst case? Assume the list is length N. Hint: What song is it like? You can use “big O” notation.

• Does it matter whether the list is sorted or not?

Other Sorting Approaches

• How else can you imagine sorting?

• Fewer comparisons than $O(N^2)$?
 • bubblesort
 • counting sort
 • insertion sort
 • Shell sort
Guess Who?

• Each player picks a character.
• Players take turns asking each other yes/no questions.
• First player to uniquely identify the other player’s character wins!

Mindreader: Set Cards
Cross-Hatched?

Squiggle?
Insight

• Each question splits the remaining set of possibilities into two subsets (yes and no).

• We want to pick a question so that the larger of the two subsets is as small as possible.

• Half!

• How many questions?
 • \(n=1, \) questions = 0
 • \(n=2, \) questions = 1
 • \(n=4, \) questions = 2
 • \(n=8, \) questions = 3
 • \(n=16, \) questions = 4
 • \(n, \) questions = \(\log n. \)

Binary Search

• Let’s say we have a sorted list of \(n \) items.

• How many comparisons do we need to make to find where a new item belongs in the list?

• Can start at the bottom and compare until the new item is bigger.

• Maximum number of comparisons?

• One for each position: \(n. \)

• We can ask better questions: bigger than the halfway mark?

• That gets us: \(\log (n+1)! \)
Binary Search Sort

- Using $O(\lg N)$ comparisons, can find where to insert the next item.

- Since we insert N items, comparisons is $O(N \lg N)$ in total.

- Can’t quite implement it that way, though: Once we find the spot, $O(N)$ to stick it in.

- However, other algorithms are really $O(N \lg N)$.

- Hillis mentions Quick Sort and Merge Sort.

Quicksort

- **quicksort**: Another sorting algorithm.

- **Idea**: Break the list of $n+1$ elements into the median and two lists of $n/2$. The two lists are those smaller than the median and those larger than the median.

- Sort the two lists separately.

- Glue them together: All n are sorted.
Quicksort Example

- Original list:
 - [56, 80, 66, 64, 37, 36, 91, 48, 17, 20, 86, 89, 41, 1, 96, 12, 74]
- Median is 56; smaller: [37, 36, 48, 17, 20, 41, 1, 12]
 - bigger: [80, 66, 64, 91, 86, 89, 96, 74]
- Sort each; smaller: [1, 12, 17, 20, 36, 37, 41, 48]
 - bigger: [64, 66, 74, 80, 86, 89, 91, 96]
- Glue:
 - [1, 12, 17, 20, 36, 37, 41, 48, 56, 64, 66, 74, 80, 86, 89, 91, 96]

But...

- If we could find the median, the whole sorting process would be pretty easy.
- Sufficient to split anywhere in the middle half at least half the time: Still $O(n \log n)$.
- Pick a random list element. 25% of the time, it will be in the 1st quarter of the sorted list, 25% of the time in the last quarter, and 50% in the middle half.
Quicksort’s Flow

• Pick an item, any item (the “pivot”).
• Partition the list as to less (left) or greater than (right) pivot.
• Sort the two halves (recursively).

Code

def Quicksort(l):
 if len(l) <= 1: return l
 pivot = l[randint(0,len(l)-1)]
 (left,equal,right) = partition(l,pivot)
 return Quicksort(left) + equal + Quicksort(right)

def partition(l,pivot):
 left = []
 right = []
 equal = []
 for item in l:
 if item < pivot: left = left + [item]
 if item > pivot: right = right + [item]
 if item == pivot: equal = equal + [item]
 return (left,equal,right)
Merge Sort

• View all the items as separate sorted lists.
• Pick the two shortest lists and combine them into a single sorted list:
 • Compare the first items. Move smaller one to end of the combined list.
• Repeat until one list is empty.
• Repeat until only a single list is left.

Merge Sort Analysis

• To merge two lists of length \(N\) requires at most \(2N\) comparisons.
• Length doubles each time.
• Initially, \(L = N\) lists of length 1 each.
• After \(\lg N\) merging passes, 1 list of length \(N\).
• Total comparisons: \(O(N \lg N)\).
Lower Bound

- We’ve shown that we can sort in $O(N \lg N)$ comparisons.
- What if someone comes along and does it better?
- We need to protect ourselves and prove a “lower bound”: that is, to show that nothing less than $N \lg N$ will suffice.
- Let’s return to “Guess Who?”.

Sorting Lower Bound

- If we are asking yes/no questions to uniquely identify one item out of n, how many questions do we need in the worst case?
- Might be as many as $\lg n$, since each question cannot exclude more than half.
- Sorting N elements identifies the correct ordering using just yes/no questions.
Counting Orderings

- How many ways to order N elements?
 - 1: 1
 - 2: 2
 - 3: $6 = 3 \times 2$
 - 4: $24 = 4 \times 3 \times 2$
 - 5: $120 = 5 \times 4 \times 3 \times 2$

- N: $N! = N \times (N-1) \times (N-2) \times ... \times 2 \times 1$

- Known as the *factorial* function.

- Thus, sorting must find the unique sorted ordering from a set of $N!$ possibilities using just yes/no questions.

A Little Math

$$N! = 1 \times 2 \times 3 \times ... \times N/2 \times (N/2 + 1) \times ... \times N$$

- # of comparisons to sort N items
- # of yes/no questions to pick one out of $N!$
- # of yes/no questions to pick one out of $N/2$
- $\lg N/2$
- $= N/2 \lg N/2$
- or, essentially $N \lg N$. $O(N \lg N)$ wins!
Web Search, Again

• We’ve seen two of the major steps needed to implement a web search engine:
 • gather up pages using graph search
 • index the words using sorting

• In a later lecture, we’ll talk about the last step: using more than one computer to respond quickly to millions of queries a day.