Language and context (from last time)

Key point:
Utterances use general information (semantics) to construct interpretations that fit a specific ongoing context.

Language and context

Consider:
[At a restaurant]
Q: Would you like a drink with dessert?
A: I’d like coffee.

Language and context

Consider:
[At an ice-cream shop]
Q: Which of these flavors do you want?
A: I’d like coffee.

Anaphora and ellipsis

Language offers many reduced expressions that seem to be interpreted by accessing the history of the discourse rather than general knowledge about the world.

Anaphora = description of an entity that has been previously introduced into the discourse.
Ellipsis = construction which describes something without an overt constituent that identifies it.
Anaphora and ellipsis: examples

Ordinary pronouns
John went to Bill’s car dealership to check out an Acura Integra. *He* looked at it for about an hour.

Demonstrative pronouns:
According to John, Bob bought Sue an Integra, and Sue bought Fred a legend. But *that* turned out to be a lie. But *that* was false. *That* struck me as a funny way to describe the situation. *That* caused Sue to become rather poor. *That* caused them both to become rather poor.

Anaphora and ellipsis: examples

One-anaphora
I saw no less than six Acura Integras today. Now I want *one*.

Alternative phrases
What is the drinking age in Afghanistan, and what is the drinking age in other countries? Bushwackers are very comfortable. Where can I find *such* shoes?

Anaphora and ellipsis: examples

VP-ellipsis
George likes his mother and Al *does* too.

Elliptical responses:
Who left? *Bill*.
Anaphora and ellipsis:
ex amples
Constituent ellipsis
Did Bo leave?
Bo?

Anaphora and ellipsis
These constituents describe domain objects just as we talked about last time.
But understanding these descriptions – figuring out what they describe – depends on coordination in dialogue, not just accessing information about the world.

Coordination
Two people have a coordination problem when they have common interests or goals and each person’s actions depend on the actions of the other.

Discourse example:
A + B want to understand one another.
A: Say he, meaning John.
B: Understand he as John.

People are great at solving coordination problems
Ask 40 Yale undergrads this:
You are to meet somebody in NYC on day X. You have not been instructed where to meet, you have no prior understanding, you cannot communicate. You just have to show up some place some time. Where and when do you go?

Half go to the info booth at Grand Central. Almost all show up there at noon.

People are great at solving coordination problems
Ask 40 Yale undergrads this:
You are to meet somebody in NYC on day X. You have not been instructed where to meet, you have no prior understanding, you cannot communicate. You just have to show up some place some time. Where and when do you go?

Language involves a special kind of coordination
In general, coordination can require open-ended reasoning.

Language uses coordination only when it is very easy.

Let’s go to NYC today.
?? I’ll meet you there then.
General principles in linguistic coordination

Solvability
All the participants can expect that the speaker chose the problem designed its form has a particular solution in mind believes all will find it

Sufficiency
All the participants can expect that the speaker gave all the information required to solve the problem

Immediacy
All the participants can expect that they can solve the problem without appreciable delay

Specific rules
You can use a pronoun only when its referent is in focus – a special status that depends on the referent’s recent activation.

John went to Bob’s party and parked next to a beautiful Acura Integra. He went inside and talked to Bob for more than an hour. Bob told him that he recently got engaged.

?? He also said that he bought it yesterday.

Solving coordination problems

Use preferences or coordination devices a specific rationale for adopting a particular solution
“the ideal solution to a coordination problem is the solution that is most salient, prominent or conspicuous with respect to their current common ground”

Example: Preferences in pronoun resolution

Recency
Entities introduced in recent utterances are more salient than entities introduced further back

John has an Integra.
Bill has a Legend.
Mary likes to drive it.
Example:
Preferences in pronoun resolution

Grammatical role
Entities introduced in more prominent grammatical positions are more salient.

John went to the Acura dealership with Bill.
He bought an Integra.

Example:
Preferences in pronoun resolution

Repeated mention
Entities that have been focused on in the prior discourse are more likely to continue to be focused on in subsequent discourse.

John needed a car to get to his new job. He decided that he wanted something sporty. Bill went to the Acura dealership with him.
He bought an Integra.

Example:
Preferences in pronoun resolution

Parallelism
Pronouns in parallel sentences are more likely to take antecedents from structurally parallel places.

Mary went with Sue to the Acura dealership.
Sally went with *her* to the Mazda dealership.

Example:
Preferences in pronoun resolution

Verb semantics
Certain verbs appear to place a semantically-oriented emphasis on one of their arguments, which biases the way subsequent pronouns are interpreted.

John telephoned Bill. *He* lost the pamphlet on Acuras.
John criticized Bill. *He* lost the pamphlet on Acuras.

Computational Challenges

Keeping track of discourse information
Stating preferences precisely
Computing preferred interpretations

Keeping track of discourse information
The conversational record
Discourse structure
Discourse relations
Attentional state
Conversational record

An agreed “transcript” of what has happened in the conversation
(an important part of the common ground)
including
- utterances
- interpretations
- actions
- events, etc.
making clear the ongoing status of discussion

Discourse structure

We identify connections between juxtaposed utterances.

John hid Bill’s car keys. He was drunk.

??John hid Bill’s car keys. He likes spinach.

When we can’t connect utterances, they don’t make sense together!

Discourse structure

When two utterances fit together:

John hid Bill’s car keys. He was drunk.

they create a discourse segment that achieves a coherent overall purpose

Discourse structure

Multiple utterances go together recursively, into a hierarchical structure.

siblings in this structure are closely related.

[John went to the bank to deposit his paycheck.
[He then took a train to Bill’s car dealership.
[He needed to buy a car.

The company he works for isn’t near any public transportation.
[He also wanted to talk to Bill about their softball league.]

Discourse structure

The same applies to dialogue.

[C: I need to travel in May
[A: And what day in May did you want to travel?
[C: OK uh I need to be there for a meeting that’s from the 12th through the 15th.
[A: And you’re flying into what city?
[C: Seattle.
[A: And what time would you like to leave Pittsburgh?
[C: I don’t think there’s many options for non-stop.
[A: Right. There’s three non-stops today…

Discourse structure – an incremental perspective

At any point, you have a stack of progressively larger segments in progress.

[C: I need to travel in May
[A: And what day in May did you want to travel?
[John went to the bank to deposit his paycheck.
[He then took a train to Bill’s car dealership.
[He needed to buy a car.}
Discourse structure – an incremental perspective

Each corresponds to a potentially unsatisfied intention or open question that new events could help resolve.

[C: I need to travel in May]
[A: And what day in May did you want to travel?]

[John went to the bank to deposit his paycheck.]
[He then took a train to Bill's car dealership.]
[He needed to buy a car.]

Discourse relations

Each utterance then attaches by finding an element on this stack that it is related to.

Kinds of relations:
- *cause-effect*
- *resemblance*
- *occasion*
- *followup*

Cause–effect

Result
George is a politician and therefore he's dishonest.

Explanation
George is dishonest. He's a politician.

Violated expectation
George is a politician, but he's honest.

Denial of preventer
George is honest, even though he's a politician.

Resemblance

Parallel
Dick Gephardt organized rallies for Al Gore, and Tom Daschle distributed pamphlets for him.

Contrast
Gephardt supported Gore but Arneay supported Bush.

Exemplification/generalization
Young aspiring politicians often support their party's pres. cand. For example, Bayh campaigned hard for Gore in 2000.

Occasion

Relate the two situations described.
George picked up the speech. He began to read.

Larry went into a restaurant. The baked salmon sounded good and he ordered it.

Followup

Examples: question and answer
A: Who came to the party?
B: John and Mary.

Utterance and request for clarification
A: John and Mary came to the party.
B: Which party?

Utterance and correction
A: John got the top prize for his essay.
B: No, it was Sue who got it.
Discourse structure and relations

Stack of segments
New utterances attach to segments by specific relations

[John went to the bank to deposit his paycheck.
He then took a train to Bill's car dealership.
He needed to buy a car.]

Attentional state

Salience is associated with segments
You prefer to draw other referents from the same segment that you attach to.

...it should be possible to identify certain functions as being unnecessary for thought by studying patients whose cognitive abilities are unaffected by locally confined damage to the brain. For example, binocular stereo fusion is known to take place in a specific area of cortex near the back of the head. Patients with damage to this area of the cortex have visual handicaps but they show no obvious impairment in their ability to think. This suggests that stereo fusion is not necessary for thought. This is a simple example, and the conclusion is not surprising.

Computational Challenges

Keeping track of discourse information
Stating preferences precisely
Computing preferred interpretations

Stating preferences precisely

Pronoun case:
If \(u \) contains a pronoun \(p \) and \(u \) is related to \(v \) in discourse structure and \(v \) puts \(x \) in focus and \(p \) agrees with \(x \) you have a coordination device to link \(p \) to \(x \)

Explaining preferences

Recency
Entities introduced in recent utterances are more salient than entities introduced further back.

[John has an Integra.
Bill has a Legend.
Mary likes to drive it.]

Explanation: hypothesis about attachment in discourse: prefer to attach low.

Explaining preferences

Grammatical role
Entities introduced in more prominent grammatical positions are more salient.

John went to the Acura dealership with Bill. *He* bought an Integra.

Explanation: hypothesis about salience within segments.
Explaining preferences

Repeated mention
Entities that have been focused on in the prior discourse are more likely to continue to be focused on in subsequent discourse.

[John needed a car to get to his new job. He decided that he wanted something sporty. Bill went to the Acura dealership with him.]
He bought an Integra.
Explanation: consequence of high attachment.

Explaining preferences

Parallelism
Pronouns in parallel sentences are more likely to take antecedents from structurally parallel places.

Mary went with Sue to the Acura dealership. Sally went with her to the Mazda dealership.
Explanation: pronoun resolution must support inferred coherence relation

Explaining preferences

Verb semantics
Certain verbs appear to place a semantically-oriented emphasis on one of their arguments, which biases the way subsequent pronouns are interpreted.

John telephoned Bill. He lost the pamphlet on Acuras.
John criticized Bill. He lost the pamphlet on Acuras.
Explanation: pronoun resolution must support inferred coherence relation.

Computational Challenges

Keeping track of discourse information
Stating preferences precisely
Computing preferred interpretations

Search with preferences

solve([],).
solve([C|Cs]) :-
 clause(C, true),
solve(Cs).
solvep([], Pref, Pref).
solvep([C|Cs], In, Out) :-
 salient_fact(C, Weight),
 combine_weights(In, Weight, Next),
solvep(Cs, Next, Out).
Iterative deepening

solvep([], _, Pref, Pref).
solvep([C|Cs], Max, In, Out) :-
 salient_fact(C, Weight),
 combine_weights(In, Weight, Next),
 Next < Max,
 solvep(Cs, Max, Next, Out).