Hidden Markov Models II

Matthew Stone CS 520, Spring 2000 Lecture 9

HMM - Recap

• Models based on key independence assumptions for time-series data

Events:

$$\delta_i^{(t)} \quad v_k^{(t)}$$

Arcs determine matrix A

$$A_{ij} = P(\delta_j^{(t)} \mid \delta_i^{(t-1)})$$

Obs governed by matrix B

$$B_{jk} = P(v_k^{(t)} \mid \delta_j^{(t)})$$

HMM - Recap

 Basic event: seeing (given) observations when system follows (hypothesized) path

$$P(\mathbf{v},\delta) = L^{[\delta]} \prod_{u=2}^{m} A^{[\delta,u]} \prod_{u=1}^{m} B^{[\mathbf{v},\delta,u]}$$

• We started with the evaluation problem

Compute
$$P(\mathbf{v} \mid \omega_i, \text{len} = m)$$

Example

• Track robot motion in a 3x3 grid of rooms:

- Robot moves randomly to adjacent rooms
- Rooms have either red, green or blue walls
 - color is observed
 - start at ★

Example (CONTINUED)

- Observe sequence:
 - blue (b), green (g), red (r)
- Question: are you in this environment (ω_0)
 - (or some other?)
- Answer using evaluation:

$$P(b^{(1)}g^{(2)}r^{(3)} \mid \omega_0)$$

Step Through Evaluation

- · Build a table
 - of the likelihood of being in room r at time t given the observations so far

Step Through Evaluation 1

· Start with the first step

$$P(r_i^{(1)}, b^{(1)}) = L_i B_{ib}$$

$$= \begin{cases} 0.9 & \text{for start state} \\ 0 & \text{otherwise} \end{cases}$$

Assumes color confusion:

Step Through Evaluation 2

• Sum up transitions to nearby states

$$P(r_j^{(2)},b^{(1)}) = \sum_i A_{ij} P(r_i^{(1)},b^{(1)})$$

Assumes transition matrix:

move 00 01 10 11 p 0.05 0.3 0.5 0.15

Step Through Evaluation 3

· Factor in second observation

$$P(r_j^{(2)},b^{(1)},g^{(2)}) = B_{jg}P(r_j^{(2)},b^{(1)})$$

Apply confusion matrix:

b g r b 0.87 0.1 0.03 g 0.1 0.87 0.03 r 0.03 0.03 0.94

Step Through Evaluation 4

• Sum up transitions to nearby states

$$P(r_k^{(3)},b^{(1)},g^{(2)})$$

$$= \sum_j A_{jk}P(r_j^{(2)},b^{(1)},g^{(2)})$$

Assumes transition matrix:

move 00 01 10 11 p 0.05 0.3 0.5 0.15

Step Through Evaluation 5

· Factor in third observation

$$P(r_k^{(3)}, b^{(1)}, g^{(2)}, r^{(3)})$$

= $B_{kr}P(r_k^{(3)}, b^{(1)}, g^{(2)})$

Apply confusion matrix:

Step Through Evaluation 6

• Sum up to account for observations

$$P(b^{(1)}, g^{(2)}, r^{(3)})$$

$$= \sum_{k} P(r_k^{(3)}, b^{(1)}, g^{(2)}, r^{(3)})$$

Forward Algorithm

- Key points:
 - For each new step, only the state at the last step (and the probability we ended there) is needed
 - Sum over all state sequences using dynamic programming
 - Finish by summing out over possible final states

HMM - Recap

- We have seen the evaluation problem Compute $P(\mathbf{v} \mid \omega_i, \text{len} = m)$
- Now we turn to the decoding problem

Find argmax $P(\delta \mid \mathbf{v}, \omega_i)$

Decoding Example

• For our robot from before -

$$\begin{aligned} & \underset{\delta}{\text{argmax}} \, P(\delta \, | \, b^{(1)}, g^{(2)}, r^{(3)}) \\ &= \underset{\delta}{\text{argmax}} \, \frac{P(\delta, b^{(1)}, g^{(2)}, r^{(3)})}{P(b^{(1)}, g^{(2)}, r^{(3)})} \\ &= \underset{\delta}{\text{argmax}} \, P(\delta, b^{(1)}, g^{(2)}, r^{(3)}) \end{aligned}$$

Decoding vs. Evaluation

• The sequence of most likely states from evaluation is different:

Most likely state at time 2

Impossible transition, so "very unlikely" sequence

Decoding vs. Evaluation

 Part of the difference is that the forward algorithm only uses past observations

- Most likely state at time 2, given 2 observations
- Not likely state for time 2, given 3 observations

Decoding vs. Evaluation

- Part of the difference is that the forward algorithm only uses past observations
- · We could get around this
 - by assuming system is in state *i* at time *t*,
 and reapplying forward algorithm onward
 - by computing full distribution on states at time t given future info, via the backward algorithm (as we'll see Wednesday)

Decoding vs. Evaluation

- Part of the difference is that the forward algorithm only uses past observations
- · We could get around this
- But decoding is different from evaluation in another way...

Decoding vs. Evaluation

Let
$$\hat{\delta} = \underset{\delta}{\operatorname{argmax}} P(\delta \mid \mathbf{v})$$

 Overall likelihood of being in state given observations:

$$P(\delta_j^{(t)}, \mathbf{v})$$

Do not have:

$$\hat{\delta}^{(t)} = \operatorname*{argmax}_{\delta_{j}} P(\delta_{j}^{(t)}, \mathbf{v})$$

Decoding vs. Evaluation VISUALIZATION

- In words:
 - State t of the highest probability sequence need not have highest probability at t

 $v^{(t)}$

Many low probability paths can give high

$$P(\delta_1^{(t)}, \mathbf{v})$$

and outweigh single high probability path at $\ \delta_3$

Viterbi Decoding

- · Tabling also works for decoding
- · As with evaluation
 - Unfold the HMM through time
 - Assign a value to each state at each step
- For decoding, value is
 - Most likely state sequence up to there
 - Probability of that sequence and past observations

Formal Justification

• Key probabilities to maximize:

$$P(\delta^{(\leq t)}, \mathbf{v}^{(\leq t)}) \text{ subject to } \delta^{(t)} = \delta_j$$
$$= A^{[\delta, t]} B^{[\mathbf{v}, \delta, t]} P(\delta^{(\leq t-1)}, \mathbf{v}^{(\leq t-1)})$$

maximized at $M_{j,t}$

• Any pair $\delta^{(t-1)}, \delta^{(t)}$ determines $A^{[\delta,t]}B^{[\mathbf{v},\delta,t]}$

Formal Justification (CONTINUED)

• So we conclude

 δ maximizes $P(\delta^{(\leq t)}, \mathbf{v}^{(\leq t)})$ subject to $\delta^{(t)} = \delta_i$

Exactly when

$$\hat{\delta}$$
 maximizes $P(\delta^{(\leq t-1)}, \mathbf{v}^{(\leq t-1)})$ subject to $\hat{\delta}^{(t-1)} = \delta_i$ (at $P(\delta^{(\leq t-1)}, \mathbf{v}^{(\leq t-1)}) = M_{i,t-1}$)

• And

$$A_{ij}B_j^{[\mathbf{v},t]}M_{i,t-1}$$
 exceeds other $A_{i'j}B_j^{[\mathbf{v},t]}M_{i',t-1}$

Viterbi Algorithm

- Initialize
 - Set $M_{i,1} = L_i B_i^{[v,1]}$
 - Set best seq(i, 1) = $\delta_i^{(1)}$
- Step
 - Set $h = \operatorname{argmax}_{i} A_{ij} B_{j}^{[\mathbf{v},t]} M_{i,t-1}$
 - Set $M_{j,t} = A_{hj}B_j^{[\mathbf{v},t]}M_{h,t-1}$
 - Set best seq(j, t) = best seq(h, t 1), $\delta_j^{(t)}$

Viterbi Algorithm (CONTINUED)

- Finish
 - After step *m*,
 - Set $h = \underset{i}{\operatorname{argmax}} M_{i,m}$
 - Return best seq(h, m)

Classic Illustration of Viterbi

- · Part-of-speech tagging
 - Preprocessing step in natural language processing
- Words are ambiguous
 - They may fulfill different roles in a sentence
 - Each role may be used with different senses of the word

Lexical Ambiguity

- Here's an example of the contrast:
 - Same word can provide object or action
 - The plants grow in Sandy's yard.
 - Sandy plants tomatoes in the yard.
 - But may describe different objects too
 - The plants bear fruit in August.
 - The plants employ union workers.

Part-of-speech Tagging

· Research shows

- you can identify the right word sense well –
 if you know the role it plays in sentence –
 its part of speech
- you can do a good job predicting parts of speech using local (Markov) models of word sequences

POS Tagging

- Simplest case: bigram tagging
 - (hidden) states are just parts of speech
 - observations are words
 - HMM parameter A gives probabilities of seeing parts of speech in succession
 - HMM parameter **B** gives probabilities of seeing words with different parts of speech
- Trigram tagging typically used in practice

POS Tagging

- Use decoding
 - Given a string of words v
 - Find sequence of parts of speech to maximize $P(\mathbf{v}, \delta)$

Illustration

- Process the example:
 - Q: Why is this ski run difficult?
 - A: The slopes fall fast.

Processing Sketch

Initialize

Many initial states are possible But *the* can only be used as a determiner So only one nonzero entry for $M_{i,1}$

Processing Sketch (CONTINUED)

Next Step

Determiners may be followed by a range of parts of speech This translates to a number of nonzero **A** entries

Processing Sketch (CONTINUED)

• Step 3, continued

...to understand the next word.

We save sequence DET, NPL, VPL and its probability