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HMM — Recap

 Models based on key independence
assumptions for time-series data

Events:
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HMM — Recap

* Basic event: seeing (given) observations
when system follows (hypothesized) path

P(v,8) = (8] [ Aldel 7 glvdal
u=2 =1

« We started with the evaluation problem

Compute P(v | w;,len =m)

Example

e Track robot motion in a 3x3 grid of rooms:

 Robot moves randomly
to adjacent rooms

» Rooms have either red,
green or blue walls

» color is observed
e start at 4




Example
(CONTINUED)

* Observe sequence:
— blue (b), green (g), red (r)

 Question: are you in this environment (¢)
— (or some other?)

« Answer using evaluation:

p(b(l)g(Z)r(3) | %)

Step Through Evaluation

e Build atable

— of the likelihood of being in room r at time ¢
given the observations so far




Step Through Evaluation
1

« Start with the first step

PP b®) = 1,8,
_ ﬁ).Q for start state
0O otherwise

Assumes color confusion:
b g r
b 0.87 0.1 0.03
g 0.1 0.87 0.03
r 0.03 0.03 0.94

Step Through Evaluation
2
 Sum up transitions to nearby states

P(I'j(z),b(l)) - Z A,-I-P(I’,-(l),b(l))
i

Assumes transition matrix:

move 00 01 10 11
p 0.050.3050.15




Step Through Evaluation
3

» Factor in second observation
P(r®,b®,g?) = B, P(r® b®)

Apply confusion matrix:

b g r
b 0.87 0.1 0.03
g 0.1 0.87 0.03
r 0.03 0.03 0.94

Step Through Evaluation
4

 Sum up transitions to nearby states

P13 b® ¢?)
=5 Ay P(r?,b0,g?)
J

Assumes transition matrix:

move 00 01 10 11
p 0.050.3050.15




Step Through Evaluation
5

e Factor in third observation

P(r,® p®, g2 1@
- Bkr P(rk(3)’ b(l)’ g(z))

Apply confusion matrix:

b g r
b 0.87 0.1 0.03
g 0.1 0.87 0.03
r 0.03 0.03 0.94

Step Through Evaluation
6

« Sum up to account for observations

P(b(l), g(Z)’ I‘(3))
- Z P(rk(3),b(1),g(2),r(3))
k




Forward Algorithm

« Key points:

— For each new step, only the state at the
last step (and the probability we ended

there)

is needed

— Sum over all state sequences using
dynamic programming

— Finish
states

by summing out over possible final

HMM — Recap

 We have seen the evaluation problem

* Now we

Compute P(v | w;,len = m)
turn to the decoding problem

Find argmax P(d]|V,w;)
3




Decoding Example

e For our robot from before —
argmax P(d | b, g(z),r(3))
5

P(5, b(l), 9(2)1 r(3))
~ A9 o p® @ (@)

= argmax P(8,b", g, r)
)

Y

Decoding vs. Evaluation

 The sequence of most likely states from
evaluation is different:

Most likely
state at time 2

Impossible transition, so
“very unlikely” sequence




Decoding vs. Evaluation

» Part of the difference is that the forward
algorithm only uses past observations

* Most likely state
at time 2, given 2
observations

* Not likely state
for time 2, given
3 observations

Decoding vs. Evaluation

o Part of the difference is that the forward
algorithm only uses past observations
 We could get around this
— by assuming system is in state / at time ¢,
and reapplying forward algorithm onward

— by computing full distribution on states at
time t given future info, via the backward
algorithm (as we’ll see Wednesday)




Decoding vs. Evaluation

» Part of the difference is that the forward
algorithm only uses past observations

 We could get around this

 But decoding is different from evaluation
in another way...

Decoding vs. Evaluation

Let & =argmax P(3| V)
5

« Overall likelihood of being in state given
observations:
PG ,v)

e Do not have:

&0 = argmax P(5,,v)
5;
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Decoding vs. Evaluation
VISUALIZATION

e |n words:

— State t of the highest probability sequence
need not have highest probability at ¢

— Many low probability
paths can give high
P(5,",v)
and outweigh single high

(0 probability path at 0

Viterbi Decoding

» Tabling also works for decoding
« As with evaluation

— Unfold the HMM through time

— Assign a value to each state at each step
* For decoding, valueis

— Most likely state sequence up to there

— Probability of that sequence and past
observations
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Formal Justification

» Key probabilities to maximize:

P(3=Y,v=") subject to & =3,

- A[es,t] B[v,es,t] P( a(st—l)’ V(st—l))
maximizedat M, ;

» Any pair 8,5 determines alsdglvad]

Formal Justification
(CONTINUED)

* So we conclude
& maximizes P(8*",v*") subject to & =5,
« Exactly when
8 maximizes P8 vty subject to 8 = 5,
lat =D, vy = ;)
 And

A;B j.[""]/w,,,f_1 exceeds other A;;B ,-[V’t]Mi',t—l

12



Viterbi Algorithm

e Initialize

—Set M;, = 1,8

— Set best seq(/, 1) = 6,-(1)
« Step

— Set h =argmax A,-ij["’"‘]/\/I,-,,_L_1
j

—SetM;, = Athj[V’t]Mh,t—l
— Set best seq(j, ) =best seq(h,t-1),5,"

Viterbi Algorithm
(CONTINUED)

e Finish
— After step m,

— Set
h=argmaxM,;
i

— Return best seq(h, m)

13



Classic lllustration of Viterbi

» Part-of-speech tagging
— Preprocessing step in natural language
processing
 Words are ambiguous

— They may fulfill different roles in a
sentence

— Each role may be used with different
senses of the word

Lexical Ambiguity

* Here's an example of the contrast:
— Same word can provide object or action
* The plants grow in Sandy’s yard.
» Sandy plants tomatoes in the yard.
— But may describe different objects too
* The plants bear fruit in August.
* The plants employ union workers.

14



Part-of-speech Tagging

e Research shows

—you can identify the right word sense well —
if you know the role it plays in sentence —
its part of speech

—you can do a good job predicting parts of
speech using local (Markov) models of
word sequences

POS Tagging

« Simplest case: bigram tagging
— (hidden) states are just parts of speech
— observations are words

— HMM parameter A gives probabilities of
seeing parts of speech in succession

— HMM parameter B gives probabilities of
seeing words with different parts of speech

e Trigram tagging typically used in practice

15



POS Tagging

* Use decoding
— Given a string of words v

— Find sequence of parts of speech to
maximize P(v,d)

lllustration

* Process the example:
— Q: Why is this ski run difficult?
— A: The slopes fall fast.

16



Processing Sketch

e |nitialize

DET

Many initial states are
possible

But the can only be used as
a determiner

So only one nonzero entry

for M,

Processing Sketch
(CONTINUED)

* Next Step
ADV
DET
NS
ADJ
the NPL

Determiners may be
followed by a range
of parts of speech
This translates to a
number of nonzero A
entries

17



Processing Sketch
(CONTINUED)

* Step 2, continued  And there are a
range of ways to use

DET VPS slopes, which
translate to nonzero
B entries
NPL

Processing Sketch
(CONTINUED)

« Step 2, continued

When we multiply A
and B entries, the
choice is clear

DET » NPL

We save sequence
v v DET, NPL and its
the slopes probability
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Processing Sketch
(CONTINUED)

* Next Step

__—VPL]  we consider what

DET » NPL) follows plural
i‘ ADV| nouns...
PREP

Processing Sketch
(CONTINUED)

« Step 3, continued

...and the range of
ways to use fall...

DET » NPL VPL

NS

the slopes fall
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Processing Sketch
(CONTINUED)

» Step 3, continued

DET

J NPL J VPL ...to understand

the next word.

We save sequence
DET, NPL, VPL and its

the

‘ slopes ‘ fall probability
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