Modeling for Discrete Features Hidden Markov Models I

Matthew Stone CS 520, Spring 2000 Lecture 8

Relaxing Independence Assumptions

Want to specify

$$P(\mathbf{x} \mid \omega_i)$$
 $\mathbf{x} \in \Delta^k$

- few parameters for training and inference
- but accurate representation of distribution
- Seen two extremes
 - full list and naïve Bayes

Relaxing Independence Assumptions

- Intermediate specs depend on problem
- Start with an important special case: sequential features
- Key assumption: Markov property
 - At each step in the sequence, the state depends only on the previous state

Some Terminology

- We'll reserve class or category to refer to the c alternative ω_i
- We'll use state to refer to the changing variable that governs successive features
 - concrete possible states: $\delta_1, \delta_2, \cdots$
 - event of being in state i at step t: $\delta_i^{(t)}$
 - variable for events at step t. $\delta^{(t)}$
 - variable over sequences of events: δ

Simple Question

Say we observe a state sequence directly

$$\boldsymbol{x} = \boldsymbol{\delta} = \left\langle \delta^{(1)}, \delta^{(2)}, \cdots, \delta^{(m)} \right\rangle$$

Must model how likely x is for this class

$$P(\delta \mid \omega_i, len = m)$$

(We restrict attention to sequences of length *m* for ease of normalization.)

For Bayes discrimination

$$P(\omega_i \mid \delta) \propto P(\delta \mid \omega_i, \text{len} = m)P(\omega_i)$$

Modeling

• Factor in the causal direction:

$$P(\delta) = P(\delta^{(1)}) \prod_{t=2}^{m} P(\delta^{(t)} | \delta^{(1)}, \dots, \delta^{(t-1)})$$

• Markov property, I: $\delta^{(t)}$ depends only on $\delta^{(t-1)}$

$$P(\delta) = P(\delta^{(1)}) \prod_{t=2}^{m} P(\delta^{(t)} | \delta^{(t-1)})$$

• Markov property, II:

$$P(\delta^{(t)} | \delta^{(t-1)})$$
 does not vary with t

Visualization

• Diagram of states and arcs

Arcs determine matrix A

$$A_{ij} = P(\delta_j^{(t)} \mid \delta_i^{(t-1)})$$

Meas. x gives events, e.g.:

$$\boldsymbol{x} = \left\langle \delta_3^{\,(1)}, \delta_1^{\,(2)}, \delta_2^{\,(3)}, \delta_1^{\,(4)} \right\rangle$$

Visualization

• Diagram of states and arcs

Arcs determine matrix A

$$A_{ij} = P(\delta_j^{(t)} \mid \delta_i^{(t-1)})$$

x determines arcs used

$$A^{[\mathbf{x},t]} := A_{ij} \text{ such that}$$

$$\left\langle x^{(t-1)}, x^{(t)} \right\rangle = \left\langle \delta_i, \delta_j \right\rangle$$

Visualization

• Diagram of states and arcs

Calculate P(x) by

$$P(\mathbf{x}) = P(x^{(1)}) \prod_{t=2}^{m} P(x^{(t)} \mid x^{(t-1)})$$
$$= P(x^{(1)}) \prod_{t=2}^{m} A^{[\mathbf{x},t]}$$

Visualization

• Diagram of states and arcs

Example: x gives path

$$\boldsymbol{x} = \left\langle \delta_3^{(1)}, \delta_1^{(2)}, \delta_2^{(3)}, \delta_1^{(4)} \right\rangle$$

$$P(\mathbf{x}) = P(x^{(1)}) \prod_{t=2}^{m} A^{[\mathbf{x},t]}$$

$$= P(\delta_3^{(1)}) A_{31} A_{12} A_{21}$$

Visualization

• Diagram of states and arcs

Info about initial state

$$L_i = P(\delta_i^{(1)})$$

Example, ctd:

$$P(\mathbf{x}) = P(\delta_3^{(1)}) A_{31} A_{12} A_{21}$$
$$= L_3 A_{31} A_{12} A_{21}$$

Notation $L^{[x]} := L_i$ if $x^{(1)} = \delta_i$

Classification Situation

• Distribution on measurements by class

$$P(\mathbf{x} \mid \omega_i, \text{len} = m)$$

- Given by
 - Priors on initial states L
 - Transition matrix A
- Assuming
 - Set of n (observable) states Δ
 - Fixed length *m* for sequences

Classification Situation (CONTINUED)

- Opportunities for finer representation
 - Naïve Bayes has *m*(*n*-1) parameters
 - Markov model has *n*(*n*+1) parameters
- Better independence assumptions

Markov Model Uses

- There are some problems where you can measure the changing state directly
 - text compression
 - correcting text (OCR, typographical errors)

Markov Model Uses (CONTINUED)

- Treat texts as word sequences
 - set Δ of observations (and states): words
 - matrix A contains estimates of
 bigram frequency by class probability,
 given you see word i now, of seeing word j
 immediately following
 - obtained from training sequences in class by counting and smoothing

But

- In the more frequent case:
 - You can't observe the state directly -
 - You must infer the state given indirect measurements
- Hidden Markov Models (HMMs) take this into account

Extended Terminology

- We retain states and state variables:
 - event of being in state *i* at step t: $\delta_i^{(t)}$
 - variable for events at step t. $\delta^{(t)}$
- We observe a symbol at each step:
 - concrete symbols: v_1, v_2, \cdots
 - event of observing i at step t: $v_i^{(t)}$
 - variable for symbol at step t: $v^{(t)}$
 - variable over observed sequences: v

Extended Assumption

- The symbol observed at time t depends only on the state at time t
 - and does not vary with t
 - specified by matrix B

$$B_{jk} = P(v_k^{(t)} | \delta_j^{(t)})$$

$$B^{[\mathbf{v}, \delta, t]} := B_{jk} \text{ such that }$$

$$\left\langle \delta^{(t)}, v^{(t)} \right\rangle = \left\langle \delta_j, v_k \right\rangle$$

HMM Trajectory

- Three problems must be solved to use these more flexible models
 - Evaluation:

Compute
$$P(\mathbf{v} \mid \omega_i, \text{len} = m)$$

– Decoding:

Find argmax
$$P(\delta | \mathbf{v}, \omega_i)$$

- Learning:

Train A and B given observations only

Evaluation – Theory

• List all s state sequences with m elements:

$$\mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_s$$

• Use Markov assumption to find:

$$P(\mathbf{s}_a) = L^{[\mathbf{s}_a]} \prod_{u=2}^m A^{[\mathbf{s}_a,u]}$$

• Use observation assumption to find:

$$P(\mathbf{v} \mid \mathbf{s}_a) = \prod_{u=1}^m B^{[v, \mathbf{s}_a, u]}$$

Evaluation – Theory (CONTINUED)

Given observation v:

$$P(\mathbf{v}, \mathbf{s}_u) = P(\mathbf{v} \mid \mathbf{s}_u) P(\mathbf{s}_u)$$
$$= L^{[\mathbf{s}_a]} \prod_{u=2}^m A^{[\mathbf{s}_a, u]} \prod_{u=1}^m B^{[v, \mathbf{s}_a, u]}$$

• Thus -

$$P(\mathbf{v}) = \sum_{a=1}^{s} \left(L^{[\mathbf{s}_a]} \prod_{u=2}^{m} A^{[\mathbf{s}_a, u]} \prod_{u=1}^{m} B^{[v, \mathbf{s}_a, u]} \right)$$

Fortunately We Can Table Sums

- First, two pieces of notation
 - Probability of being in state j at step t having seen first t observations:

$$P(\delta_j^{(t)}, \mathbf{v}^{(\leq t)})$$

- Access from B:

$$B_j^{[\mathbf{v},t]} := B_{jk} \text{ if } v^{(t)} = v_k$$

– Fixing a sequence to match α after t

$$\mathbf{s}^{(>t)} = \alpha$$

Tabling Sums

• We find $P(\mathbf{v}^{(\leq t)})$ as before, making an arbitrary selection among sequences:

$$P(\mathbf{v}^{(\leq t)}) = \sum_{\mathbf{s}_{a}^{(>t)} = \delta} \left(L^{[\mathbf{s}_{a}]} \prod_{u=2}^{t} A^{[\mathbf{s}_{a},u]} \prod_{u=1}^{t} B^{[v,\mathbf{s}_{a},u]} \right)$$

· Narrow to one state by restricting sum:

$$P(\delta_j^{(t)}, \mathbf{v}^{(\leq t)}) = \sum_{\mathbf{s}_a^{(>t-1)} = \delta'} \left(L^{[\mathbf{s}_a]} \prod_{u=2}^t A^{[\mathbf{s}_a, u]} \prod_{u=1}^t B^{[v, \mathbf{s}_a, u]} \right)$$

• Ensure match with $\delta' := \delta[t : \delta_i]$

Tabling Sums (CONTINUED)

Take current formula:

$$P(\delta_{j}^{(t)}, \mathbf{v}^{(\leq t)}) = \sum_{\mathbf{s}_{a}^{(>t-1)} = \delta'} \left(L^{[\mathbf{s}_{a}]} \prod_{u=2}^{t} A^{[\mathbf{s}_{a}, u]} \prod_{u=1}^{t} B^{[v, \mathbf{s}_{a}, u]} \right)$$

• And condition on t-1: $s_a^{(>t-2)} = \delta[t-1:\delta_i]$

$$=\sum_{i=1}^{n}\left[\sum_{\mathbf{s}_{a}^{(>t-2)}=\delta'[t-1:\delta_{i}]}\left(L^{\left[\mathbf{s}_{a}\right]}\prod_{u=2}^{t}A^{\left[\mathbf{s}_{a},u\right]}\prod_{u=1}^{t}B^{\left[v,\mathbf{s}_{a},u\right]}\right)\right]$$

Tabling Sums (CONTINUED)

• Rewrite:

$$= \sum_{i=1}^{n} \left[\sum_{\mathbf{s}_{a}^{(>t-2)} = \delta'[t-1:\delta_{i}]} \left(L^{[\mathbf{s}_{a}]} A^{[\mathbf{s}_{a},t]} B^{[\mathbf{v},\mathbf{s}_{a},t]} \prod_{u=2}^{t-1} A^{[\mathbf{s}_{a},u]} \prod_{u=1}^{t-1} B^{[\mathbf{v},\mathbf{s}_{a},u]} \right) \right]$$

And factor:

$$= \sum_{i=1}^{n} \left[A_{ij} B_{j}^{[\mathbf{v},t]} \sum_{\mathbf{s}_{a}^{(>t-2)} = \delta'[t-1:\delta_{j}]} \left(L^{[\mathbf{s}_{a}]} \prod_{u=2}^{t-1} A^{[\mathbf{s}_{a},u]} \prod_{u=1}^{t-1} B^{[\mathbf{v},\mathbf{s}_{a},u]} \right) \right]$$

Tabling Sums (CONTINUED)

· And factor again:

$$P(\delta_j^{(t)}, \mathbf{v}^{(\leq t)}) = \sum_{j=1}^n \left[A_{ij} B_j^{[\mathbf{v}, t]} P(\delta_i^{(t-1)}, \mathbf{v}^{(\leq t-1)}) \right]$$

The Big Picture

• Recurrence says how to step forward...

 $v^{(t)}$

Suppose you've reached step t, and you've tabulated the probabilities of seeing each of the possible states...

The Big Picture

• Recurrence says how to step forward...

$$\delta_1 \qquad p_1 = P(\delta_1^{(t)}, \mathbf{v}^{(\leq t)})$$

•••
$$(\delta_2)$$
 $p_2 = P(\delta_2^{(t)}, \mathbf{v}^{(\leq t)})$

$$\begin{array}{cc}
\delta_2 & \rho_2 = P(\delta_2^{(t)}, \mathbf{v}^{(\leq t)}) \\
\hline
\delta_3 & \rho_3 = P(\delta_3^{(t)}, \mathbf{v}^{(\leq t)})
\end{array}$$

 $v^{(t)}$

...like so

The Big Picture

- Recurrence says how to step forward...
 - $p_1(\delta_1)$
- δ_1
- $p_2(\delta_2)$
- $\left(\delta_{2}\right)$
- $p_3(\delta_3)$
- δ_3
- $v^{(t)}$
- $v^{(t+1)}$

Consider the output symbol at the next step, and each of the states that might have produced it.

The Big Picture

- Recurrence says how to step forward...
 - $p_1(\delta_1)$
- δ_1 ? = $P(\delta_1^{(t+1)}, \mathbf{v}^{(\leq t+1)}) = p_1'$
- $p_2(\delta_2)$
- δ_2 ? = $P(\delta_2^{(t+1)}, \mathbf{v}^{(\leq t+1)}) = p_2'$
- $p_3(\delta_3)$
- δ_3 ? = $P(\delta_3^{(t+1)}, \mathbf{v}^{(\leq t+1)}) = p_3'$
- $v^{(t)}$
- $v^{(t+1)}$ Want to assign probabilities to the new states.

The Big Picture

• Recurrence says how to step forward...

For each new state

$$p'_{j} = \sum_{i=1}^{n} \left[A_{ij} B_{j}^{[\mathbf{v},t+1]} p_{i} \right]$$

$$p'_{j} = \sum_{i=1}^{n} \left[A_{ij} B_{j}^{[\mathbf{v},t+1]} p_{i} \right]$$
E.g.:
$$p'_{1} = A_{11} B_{1}^{[\mathbf{v},t+1]} p_{1} + A_{12} B_{1}^{[\mathbf{v},t+1]} p_{2} + A_{13} B_{1}^{[\mathbf{v},t+1]} p_{3}$$

Evaluation – Summary

- · We have defined and justified
 - HMM forward algorithm
 - determining probabilities of observations
- Build table
 - Initialize: $p_{j,0} = L_j B_j^{[\mathbf{v},0]}$
 - Step forward: $p_{j,t+1} = \sum_{i=1}^{n} [A_{ij}B_{j}^{[\mathbf{v},t+1]}p_{i,t}]$
 - Finish: $P(\mathbf{v} \mid \text{len} = m) = \sum_{i=1}^{n} p_{i,m}$

Use of Evaluation

• We have c models

$$\omega_a \Rightarrow \left\langle \mathbf{L}^a, \mathbf{A}^a, \mathbf{B}^a \right\rangle$$

- Each model represents distribution over sequences in the class, e.g. –
 - likely word sequences
 - likely sound sequences for saying a word
 - likely motion patterns in gesture

Use of Evaluation (CONTINUED)

- We get some observed sequence v
- We can classify v by Bayes's formula:

Choose $\underset{\omega_a}{\operatorname{argmax}} P(\mathbf{v} \mid \omega_a) P(\omega_a)$ where $P(\mathbf{v} \mid \omega_a)$ is got by HMM forward