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Modeling for Discrete Features
Hidden Markov Models I

Matthew Stone
CS 520, Spring 2000

Lecture 8

Relaxing Independence 
Assumptions

• Want to specify 

– few parameters for training and inference

– but accurate representation of distribution

• Seen two extremes
– full list and naïve Bayes
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Relaxing Independence 
Assumptions

• Intermediate specs depend on problem 
• Start with an important special case: 

sequential features

• Key assumption: Markov property 
– At each step in the sequence, the state 

depends only on the previous state

Some Terminology

• We’ll reserve class or category to refer to 
the c alternative

• We’ll use state to refer to the changing 
variable that governs successive features
– concrete possible states:

– event of being in state i at step t:    
– variable for events at step t:
– variable over sequences of events:
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Simple Question

• Say we observe a state sequence directly

• Must model how likely x is for this class

(We restrict attention to sequences of length 
m for ease of normalization.)

• For Bayes discrimination
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Modeling

• Factor in the causal direction:

• Markov property, I:       depends only on

• Markov property, II:

does not vary with t
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Visualization

• Diagram of states and arcs
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Arcs determine matrix A

Meas. x gives events, e.g.:
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Visualization

• Diagram of states and arcs

1δ
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2δ
Arcs determine matrix A

x determines arcs used
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Visualization

• Diagram of states and arcs
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Calculate P(x) by
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Visualization

• Diagram of states and arcs
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Example: x gives path
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Visualization

• Diagram of states and arcs
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2δ
Info about initial state

Example, ctd:

Notation 
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Classification Situation

• Distribution on measurements by class

• Given by
– Priors on initial states L
– Transition matrix A

• Assuming
– Set of n (observable) states ∆
– Fixed length m for sequences
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Classification Situation
(CONTINUED)

• Opportunities for finer representation
– Naïve Bayes has m(n-1) parameters

– Markov model has n(n+1) parameters

• Better independence assumptions

Markov Model Uses

• There are some problems where you can 
measure the changing state directly
– text compression

– correcting text (OCR, typographical errors)
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Markov Model Uses
(CONTINUED)

• Treat texts as word sequences
– set ∆ of observations (and states): words

– matrix A contains estimates of 

bigram frequency by class – probability, 
given you see word i now, of seeing word j
immediately following

– obtained from training sequences in class 
by counting and smoothing

But

• In the more frequent case:
– You can’t observe the state directly –

– You must infer the state given indirect 
measurements 

• Hidden Markov Models (HMMs) take this 
into account
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Extended Terminology

• We retain states and state variables:
– event of being in state i at step t:    
– variable for events at step t:

• We observe a symbol at each step:
– concrete symbols:

– event of observing i at step t:    
– variable for symbol at step t:
– variable over observed sequences: v
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Extended Assumption

• The symbol observed at time t depends 
only on the state at time t
– and does not vary with t
– specified by matrix B
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HMM Trajectory

• Three problems must be solved to use 
these more flexible models
– Evaluation:

– Decoding: 

– Learning:

Train A and B given observations only
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Evaluation – Theory

• List all s state sequences with m elements: 

• Use Markov assumption to find:

• Use observation assumption to find:
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Evaluation – Theory
(CONTINUED)

• Given observation v:

• Thus –
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Fortunately
We Can Table Sums

• First, two pieces of notation
– Probability of being in state j at step t

having seen first t observations:

– Access from B:

– Fixing a sequence to match α after t
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Tabling Sums

• We find              as before, making an 
arbitrary selection among sequences: 

• Narrow to one state by restricting sum:

• Ensure match with 
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Tabling Sums
(CONTINUED)

• Take current formula:

• And condition on t-1:
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Tabling Sums
(CONTINUED)

• Rewrite:

• And factor:
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Tabling Sums
(CONTINUED)

• And factor again:
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The Big Picture

• Recurrence says how to step forward… 
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Suppose you’ve reached 
step t, and you’ve tabulated 
the probabilities of seeing 
each of the possible 
states...

The Big Picture

• Recurrence says how to step forward…
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The Big Picture

• Recurrence says how to step forward…
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Consider the 
output symbol 
at the next step, 
and each of the 
states that 
might have 
produced it.
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The Big Picture

• Recurrence says how to step forward…
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Want to assign probabilities 
to the new states.
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The Big Picture

• Recurrence says how to step forward…
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For each new state

E.g.:
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Evaluation – Summary

• We have defined and justified 
– HMM forward algorithm

– determining probabilities of observations

• Build table 
– Initialize:

– Step forward:

– Finish:   

[ ]0,
0,

v
jjj BLp =

[ ][ ]∑
=

+
+ =

n

i
ti

t
jijtj pBAp

1
,

1,
1,

v

∑
=

==
n

i
mipmP

1
,)len|(v



17

Use of Evaluation

• We have c models

– Each model represents distribution over 
sequences in the class, e.g. –

• likely word sequences
• likely sound sequences for saying a word
• likely motion patterns in gesture
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Use of Evaluation
(CONTINUED)

• We get some observed sequence v
• We can classify v by Bayes’s formula:
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