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Relaxing Independence
Assumptions

 Want to specify
P(x|w) x O

— few parameters for training and inference
— but accurate representation of distribution

e Seen two extremes
— full list and naive Bayes




Relaxing Independence
Assumptions

* Intermediate specs depend on problem

« Start with an important special case:
sequential features

« Key assumption: Markov property

— At each step in the sequence, the state
depends only on the previous state

Some Terminology

 We’'ll reserve class or category to refer to
the c alternative W,

« We'll use state to refer to the changing
variable that governs successive features

— concrete possible states: 01,0,

— event of being in state / at step t. 6,(t)
— variable for events at step t &

— variable over sequences of events: 0




Simple Question

e Say we observe a state sequence directly
X=8= <5(1)’5(2)’,,,’5(m)>
* Must model how likely x is for this class
P3| w;,len=m)
(We restrict attention to sequences of length
m for ease of normalization.)
* For Bayes discrimination

P(w; |0) T P(O]| wy;,len=m)P(w,)

Modeling

* Factor in the causal direction:
P(3) = P(5(1>)ﬁ P &Y., 80y
« Markov propertyt,_lz: 5 depends only on &
P(3) = P(5(1>)ﬁ P 3y
t=2

* Markov property, Il:
P | 8Y) does not vary with ¢




Visualization

» Diagram of states and arcs

Arcs determine matrix A

Ao @ A = P(Bj(t) | 6i(t—l))

@ , Meas. x gives events, e.g.:
( ) (2 x (3) x (4
X :<53()’51( ) 5,3 5 )>

Visualization

» Diagram of states and arcs

Arcs determine matrix A

Ay _
@ Ay =PE 0 181)
@ , x determines arcs used

Al = A; such that

@ <X(H), x(t)> =(5,,3;)




Visualization

» Diagram of states and arcs

Calculate P(x) by

Ao
,@ P(x) = P(X(l))ﬁ P(X(t) | X(f—l))

o=

= p(X(l))ﬁ A[X,f]
>

Visualization

» Diagram of states and arcs

A Example: x gives path
2
(3,)  x= 5,9,52,59,59)

@ , P(x) = P(x®)[] Ak

=2

@ = P(3") Ag Ao Ay




Visualization

» Diagram of states and arcs

Info about initial state

Ay
@ L =P&")

@ , Example, ctd:
P(x) = P(35") Ag AL Ay
L = L3 A3 A1A1

3
Notation (IXl:= [, if x® =5,

Classification Situation

« Distribution on measurements by class
P(x | w;,len =m)
« Given by
— Priors on initial states L
— Transition matrix A
 Assuming
— Set of n (observable) states A
— Fixed length m for sequences




Classification Situation
(CONTINUED)

* Opportunities for finer representation
— Naive Bayes has m(n-1) parameters
— Markov model has n(n+1) parameters
» Better independence assumptions

Markov Model Uses

 There are some problems where you can
measure the changing state directly

— text compression
— correcting text (OCR, typographical errors)




Markov Model Uses
(CONTINUED)

« Treat texts as word sequences
— set A of observations (and states): words
— matrix A contains estimates of

bigram frequency by class — probability,
given you see word / now, of seeing word j
immediately following

— obtained from training sequences in class
by counting and smoothing

But

* In the more frequent case:
—You can’t observe the state directly —

— You must infer the state given indirect
measurements

 Hidden Markov Models (HMMs) take this
into account




Extended Terminology

* We retain states and state variables:
— event of being in state  at step t. 5"
— variable for events at step t. 8"

« We observe a symbol at each step:
— concrete symbols: vy,V,,--
— event of observing jat step t. v,(t)
— variable for symbol at step t. v(!
— variable over observed sequences: v

Extended Assumption

« The symbol observed at time t depends
only on the state at time t

—and does not vary with t
— specified by matrix B
Bj = P | 5/'(0)
glvotl . B such that
<5(f)’v(f)> — <5j’Vk>




HMM Trajectory

* Three problems must be solved to use
these more flexible models

— Evaluation:
Compute P(v | w;,len = m)
— Decoding:
Find argmax P(d]|Vv,w;)
— Learning: °
Train A and B given observations only

Evaluation — Theory

» List all s state sequences with melements:

Sl’SZ’.”’SS
» Use Markov assumption to find:
[sal (7 plsatd]
P(s,) = L2 |‘|Asa’“
u=2
* Use observation assumption to find:
N glvsau]
P(v|s,)=[]B" ="

u=l1
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Evaluation — Theory
(CONTINUED)

e Given observation v:

P(v,s,)=P(v|s,)P(s,)

- L[Sa] ﬁA[Sa,U] ﬁ B[V,sa,u]

u=2 u=1
e Thus —
P(V) — iH_[Sa] ﬁ A[SaaU] ﬁ B[VasaaU]H
a=1l u=2 u=1 L

Fortunately
We Can Table Sums

» First, two pieces of notation
— Probability of being in state jat step t
having seen first t observations:
P(Bj(t),v(g))
— Access from B:
Bj[v’t] = By if VIV = v,
— Fixing a sequence to match a after t
s = ¢
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Tabling Sums

« We find P(v*9) as before, making an
arbitrary selection among sequences:

PVE)= 5 Hlsal [ Alsedd B[v,sa,ulg
s,

:5D u=2 u=1
* Narrow to one state by restricting sum:

() (<0 — [sal (4 alsat] i glv:Sa]
P(BJ v ) sa(>Zl)—5§_ quZA LII_—llB E

« Ensure match with & :=3|t:§]

Tabling Sums
(CONTINUED)

 Take current formula:

t t
P(Bj(t)’v(st)) - ()ZD H_[sa] I—l A[sa,u]LII—_llB[v,sa,u]E

=y 0 u=2

« And condition on t-1: s =pt-13,|

I L | s
= @ u=l1 @

=1 a(>t—2) :6’[1'_1'6'] D u=2
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Tabling Sums
(CONTINUED)

 Rewrite:

2 E 5 Hlsal glsadlglvsad |-|  Alsatl |‘| 1 Blvsat] %
18,02 =5(t-15,]0 ‘H

1

 And factor:

% D4 B [v.t] Z H_[Sa] A[Sa u]I—lB[v Sar u]%

=10 5,02 =5 15,1 u:2

Tabling Sums
(CONTINUED)

« And factor again:

n
P(a](t)’V(St)) - z [AUBJ[V,t]P(BI(t—l)’V(St—l))
=1




The Big Picture

» Recurrence says how to step forward...

Suppose you've reached
step t, and you've tabulated
oo the probabilities of seeing
each of the possible
states...

)

The Big Picture

» Recurrence says how to step forward...

p =P vE)
et pzzp(éz(t)’v(g))
Py = P35 )

v ...like so

14



The Big Picture

» Recurrence says how to step forward...

p1 Consider the

output symbol

p2 at the next step,

and each of the
p3 states that
might have

s (D) produced it.

The Big Picture

» Recurrence says how to step forward...

p1 2= P(51(t+1),v(5t+1)) — pi
eoe p2 ’) - P(62(t+1)’V(St+1)) — prz
,03 2= P(53(t+1),V(St+l)) — ,Ué

S0 (D) Want to assign probabilities
to the new states.
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The Big Picture

» Recurrence says how to step forward...
For each new state

n
pj = Zl[AijB/[V’t Up,
=
E.Q.
p; = AllBl[V'Hl]Pl +
Az Bl[v'Hl]Pz +
A3 Bl[v't+1]P3

Evaluation — Summary

 We have defined and justified

— HMM forward algorithm

— determining probabilities of observations
» Build table

— Initialize: pjo = Lij[V’O]

_ [vt+1]
— Step forward: pj1 = Y [A/ij Pt
=1

n
— Finish: P(v |len=m) = Z Pim
=1
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Use of Evaluation

 We have ¢ models
w, O (L%,A%B?)
— Each model represents distribution over
sequences in the class, e.g. —
* likely word sequences
* likely sound sequences for saying a word
* likely motion patterns in gesture

Use of Evaluation
(CONTINUED)

 We get some observed sequence v
* We can classify v by Bayes'’s formula:
Choose argmax P(v | w,)P(w,)
Wg

where P(v | w,)is got by HMM forward
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