Our Learning Problem, Again

- Use training data to estimate unknown probabilities and probability density functions
- So far, we have depended on describing the functions in a known parametric form
- Today, we relax that assumption
Let’s Start with an Obvious Idea

- **Nearest-neighbor classification Algorithm:**
 - Start with \(n \) points of training data:
 \[\mathcal{D}^n = \{x_1, \ldots, x_n\} \]
 - Given test point \(x \)
 - Find training point \(x' \) closest to \(x \)
 - Assign \(x \) the same category as \(x' \)

How Well Does This Work?

- **Hard to say unless you have a lot of data**
 - But suppose data is no object

- **Label of \(x' \) is class \(\omega' \); true label of \(x \) is \(\omega \)**

- **Correct answer if \(\omega' = \omega \): What’s \(P(\omega' = \omega) \)?**
 - \(p(\omega|x') \) in general
 - \(p(\omega|x) \) as \(x' \) becomes closer to \(x \)
How Well Does This Work?
continued

• **Probability of error at x is therefore:**
 \[
 1 - \sum_{i=1}^{c} P(\omega_i | x)P(\omega_i | x)
 \]
 – i.e., wrong in all cases except those where \(x\) and \(x'\) happen to agree.

• **In principle, best you could do is:**
 \[
 1 - P(\omega_i | x)
 \]
 – i.e., guess most likely

How Well Does This Work?
some perspective

• **Anyone who’s anyone gets 95% accuracy**
 – When Bayes error is 5%
 \[
 1 - P(\omega_i | x)
 \]
 – Limit nearest-neighbor error is ~9%
 \[
 1 - \sum_{i=1}^{c} P(\omega_i | x)P(\omega_i | x)
 \]
 • Could be better, if distributions are favorable
 • Could be worse, because you don’t have infinite data
How Well Does This Work?

some perspective

• Surprisingly good (since it’s so easy)
• But it may not be enough for your task
 – Classifying sequences
 • At 7 elements, Bayes could get 2/3 right
 • Nearest neighbor is just getting 1/2 right

A Possible Improvement

• K-Nearest Neighbor Classification
 – Start with \(n \) points of training data:
 \[\mathcal{D}^n = \{x_1, \ldots, x_n\} \]
 – Given test point \(x \)
 – Find \(k \) training points \(X \) closest to \(x \)
 – Assign \(x \) the most frequent category of \(X \)
K-Nearest Neighbor

Good points:
- More likely data can overcome rare events
 - In nearest neighbor, each rare data point translates into a ball of likely mistakes
 - In 3-nearest neighbor, you need two rare data points together to get a ball of likely mistakes
 - Can get better and better the more points vote

Bad points:
- Need tons more data
 - Only if voters are close to x does vote provide good density information about x
 - Only by considering lots of voters do you converge on an accurate likelihood for x
Returning to Density Estimation

- **Haven’t we changed the problem?**
 - K-nearest neighbor is a classifier
 - Maximum likelihood builds a distribution

- **Want to get a distribution for KNN**
 - Compare approaches
 - Mix KNN and other info probabilistically

Returning to Density Estimation

- **Basic nearest neighbor idea works**
 - To find $p(x, \omega_i)$
 - Place a cell of volume V around x
 - Capture k samples, of which i are in ω_i
 - Calculate
 \[
p(x, \omega_i) = \frac{i/k}{V}
 \]
 - $p(x \mid \omega_i) = \frac{p(x, \omega_i)}{P(\omega_i)}$
Returning to Density Estimation

- **Basic nearest neighbor idea works**
 - Well, almost…
 - Real probabilities should integrate to one
 (Although you don’t always need real \(\omega_i \) probabilities to build discriminant functions)
 - Volume \(V \) varies as a function of \(x \) so you may have trouble across the whole space

\[
p(x, \omega_i) = \frac{i/k}{V}
\]

Sample-based Density Estimation

- We’ll now consider a close variant of KNN that represents the density more conveniently

 Parzen Windows
Parzen Windows

• Treat each sample as contributing a small Gaussian density that peaks around it and drops off quickly
 – Use parameter h (dummy for variance σ) to control drop off
 – Density around u is:

$$\varphi(x;u) = \frac{1}{\sqrt{2\pi h}} \exp\left(-\frac{(x-u)^T(x-u)}{2h^2}\right)$$

Parzen Windows

• Overall density for data

$$\mathcal{D}^n = \{x_1, \ldots, x_n\}$$

• is

$$p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \varphi(x; x_i)$$
Cute Implementation

• 3 Layer Network:
 • Layer One:
 Inputs
 – Each node gets a feature of the pattern that you’re classifying
 – Pattern is normalized to have unit length

• 3 Layer Network:
 • Layer Two:
 Patterns
 – Each node gets a normalized training vector \mathbf{w}; on input \mathbf{x} it computes
 $$z = \mathbf{w}^T \mathbf{x}$$
Cute Implementation

- 3 Layer Network:
- Layer Two:
 - The node will output likelihood component
 \[e^{-\frac{(z-1)^2}{\sigma^2}} \]

Cute Implementation

- 3 Layer Network:
- Layer Three:
 - One node per class
 - Sums input from pattern nodes for training data in the class
Kind of “Neural Network”

- **Easy to train**
 - Add a new pattern node for each sample

- **Easy to interpret probabilistically**
 - Approximates arbitrary input distributions (using samples)
 - Outputs Bayes optimal classification given its assumed distribution of inputs