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Parameter Estimation

» Fitting continuous values from data

* Two kinds of problems
— Extensions of classification where you
estimate continuous instantaneous state
* E.g., in computer vision
— Probabilistic learning where you describe
the distribution of examples




Parameter Estimation as Learning:
Motivation

* We know how to build optimal classifiers,
given exact probabilistic models

» But these are more realistic givens:

— Vague general knowledge about problem

— Design samples or training data
representative of the patterns to classify

 How do we use this to design a classifier?

Parameter Estimation as
Learning

» Use training data to estimate unknown

probabilities and probability density
functions




Easy Case: Probabillities

* Provided you have enough data:
— N samples of which ¢; are in «;

estimate P(w,) as %

Hard Case: Density Functions

» Datais always sparse
— Continuous events never happen twice

— Curse of dimensionality

» With more features you need exponentially
more samples to cover events equally closely
with training data




Solution: Modeling

» Constrain the density estimation by
making assumptions about the form of the
distribution

* Rather than learning some function,
estimate the parameters of the modeled
distribution

Example

« Normal distribution

— Use general knowledge that measurement
involves lots of independent noise

— Assume
p(x| ) ~ N(p,0%)
— To describe density, just need to estimate
K and o — not the whole function




Two Procedures — |

* Maximum likelihood
— The distribution parameters are fixed
— Know no expectations about likely values

— Base estimate on the assumption that the
training data is representative

* Find values of parameters that make the
training data as likely as possible

Two Procedures — |l

» Bayesian estimation

— We have expectations about parameters

» Expectations are expressed as prior density on
parameter values

* We want to combine these expectations with
measurements (training data)

» Use Bayes'’s formula to derive a posterior
— First for parameter values
— Then for future measurements




Background

» Describing training data mathematically
— We have c sets of samples
Each 2 contains x,---x,, lidby p(x | «;)
— lid: independent, identically distributed

Background

» Describing training data mathematically

— Density takes a known parametric form
determined by parameter vector 6
E.g. for p(x | o) ~ N(H;, Z;)
6 gives components of py,,Z;

* Use info from samples to provide
estimates of parameters




Background

» Simplifying assumptions and notation
2 gives noinfo about 8, unless i = j

[J ¢ separate problems
— Use nvalues iid by p(x|0) to estimate 0

Maximum Likelihood

e Likelihood
p(2[8) =[] p(x,|6)
k=1

» Maximum likelihood estimate
— The value of 6 that maximizes p(x|0)

— The value of 6 that in some sense best
supports the data




Parenthesis

» We’'ll adopt the usual trick of using log
likelihood to facilitate reasoning about
exponential (e.g., normal) distributions

1(8) =Inp(2 | O)

Deriving MLES

* Want .
0 =arg mgx 1(8)

» “Try differentiating”
solve g/ =0

(6) = killnp(xk 16)

ol = kz Uelnp(x, | 6)
=1




An Example

 Normal distribution, one feature:
P(x, 18) ~ N(6,,6,)
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An Example
e To maximize, solve:
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An Example

e We derived solution as:
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