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Parameter Estimation I:
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Lecture 4

Parameter Estimation

• Fitting continuous values from data

• Two kinds of problems
– Extensions of classification where you 

estimate continuous instantaneous state
• E.g., in computer vision

– Probabilistic learning where you describe 
the distribution of examples
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Parameter Estimation as Learning:
Motivation

• We know how to build optimal classifiers, 
given exact probabilistic models

• But these are more realistic givens:
– Vague general knowledge about problem
– Design samples or training data

representative of the patterns to classify

• How do we use this to design a classifier?

Parameter Estimation as 
Learning

• Use training data to estimate unknown 
probabilities and probability density 
functions
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Easy Case: Probabilities

• Provided you have enough data:
– N samples of which

N
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i  as )( estimate ω
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Hard Case: Density Functions

• Data is always sparse
– Continuous events never happen twice
– Curse of dimensionality

• With more features you need exponentially 
more samples to cover events equally closely 
with training data
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Solution: Modeling

• Constrain the density estimation by 
making assumptions about the form of the 
distribution

• Rather than learning some function, 
estimate the parameters of the modeled 
distribution

Example

• Normal distribution
– Use general knowledge that measurement 

involves lots of independent noise
– Assume

– To describe density, just need to estimate 
µ and σ – not the whole function

),(~)|( 2σµω Nxp i
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Two Procedures – I 

• Maximum likelihood
– The distribution parameters are fixed
– Know no expectations about likely values
– Base estimate on the assumption that the 

training data is representative

• Find values of parameters that make the 
training data as likely as possible

Two Procedures – II 

• Bayesian estimation
– We have expectations about parameters

• Expectations are expressed as prior density on 
parameter values

• We want to combine these expectations with 
measurements (training data)

• Use Bayes’s formula to derive a posterior
– First for parameter values
– Then for future measurements
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Background

• Describing training data mathematically
– We have c sets of samples 

– iid: independent, identically distributed
)|(by  iid  contains  Each 1 ini p
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Background

• Describing training data mathematically
– Density takes a known parametric form 

determined by parameter vector θ

• Use info from samples to provide 
estimates of parameters
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Background

• Simplifying assumptions and notation

➥c separate problems 
– Use n values iid by p(x|θ) to estimate θ

jiji = unless  about info no gives θ'

Maximum Likelihood

• Likelihood

• Maximum likelihood estimate 
– The value of θ that maximizes p(x|θ)
– The value of θ that in some sense best 

supports the data

∏
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Parenthesis

• We’ll adopt the usual trick of using log 
likelihood to facilitate reasoning about 
exponential (e.g., normal) distributions
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Deriving MLEs

• Want

• “Try differentiating”
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An Example

• Normal distribution, one feature:

),(~)|( 21 θθNxp k θ

( )21
2

2 2
1

2ln
2
1

)|(ln θ−
θ

−πθ−= kk xxp θ

( )

( )


















θ
θ−+

θ
−

θ−
θ

=∇=∇

2
2

2
1

2

1
2

22
1

1

)|(ln
k

k

k x

x

xpl θθθ

An Example

• To maximize, solve:
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An Example

• We derived solution as:

∑
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