Parameter Estimation I: Maximum Likelihood

Matthew Stone CS 520, Spring 2000 Lecture 4

Parameter Estimation

- Fitting continuous values from data
- Two kinds of problems
 - Extensions of classification where you estimate continuous instantaneous state
 - E.g., in computer vision
 - Probabilistic learning where you describe the distribution of examples

Parameter Estimation as Learning: Motivation

- We know how to build optimal classifiers, given exact probabilistic models
- But these are more realistic givens:
 - Vague general knowledge about problem
 - Design samples or training data representative of the patterns to classify
- How do we use this to design a classifier?

Parameter Estimation as Learning

Use training data to estimate unknown probabilities and probability density functions

Easy Case: Probabilities

- Provided you have enough data:
 - N samples of which c_i are in ω_i estimate $P(\omega_i)$ as $\frac{c_i}{N}$

Hard Case: Density Functions

- Data is always sparse
 - Continuous events never happen twice
 - Curse of dimensionality
 - With more features you need exponentially more samples to cover events equally closely with training data

Solution: Modeling

- Constrain the density estimation by making assumptions about the form of the distribution
- Rather than learning some function, estimate the parameters of the modeled distribution

Example

- Normal distribution
 - Use general knowledge that measurement involves lots of independent noise
 - Assume

$$p(x \mid \omega_i) \sim N(\mu, \sigma^2)$$

– To describe density, just need to estimate μ and σ – not the whole function

Two Procedures – I

- Maximum likelihood
 - The distribution parameters are fixed
 - Know no expectations about likely values
 - Base estimate on the assumption that the training data is representative
- Find values of parameters that make the training data as likely as possible

Two Procedures – II

- Bayesian estimation
 - We have expectations about parameters
 - Expectations are expressed as prior density on parameter values
 - We want to combine these expectations with measurements (training data)
- Use Bayes's formula to derive a posterior
 - First for parameter values
 - Then for future measurements

Background

- Describing training data mathematically
 - We have c sets of samples Each \mathcal{D}_i contains $\mathbf{x}_1 \cdots \mathbf{x}_{n_i}$ iid by $p(\mathbf{x} \mid \omega_i)$
 - iid: independent, identically distributed

Background

- Describing training data mathematically
 - Density takes a known parametric form determined by parameter vector θ E.g. for $p(\mathbf{x} \mid \omega_i) \sim N(\mu_i, \Sigma_i)$ θ gives components of μ_i, Σ_i
- Use info from samples to provide estimates of parameters

Background

• Simplifying assumptions and notation

 \mathcal{D}_i gives no info about θ_i unless i = j

- ⇒ c separate problems
 - Use *n* values iid by $p(\mathbf{x}|\theta)$ to estimate θ

Maximum Likelihood

Likelihood

$$p(\mathcal{D} \mid \theta) = \prod_{k=1}^{n} p(\mathbf{x}_{k} \mid \theta)$$

- · Maximum likelihood estimate
 - The value of θ that maximizes $p(\mathbf{x}|\theta)$
 - The value of $\boldsymbol{\theta}$ that in some sense best supports the data

Parenthesis

 We'll adopt the usual trick of using log likelihood to facilitate reasoning about exponential (e.g., normal) distributions

$$I(\theta) = \ln p(\mathcal{D} \mid \theta)$$

Deriving MLEs

• Want

$$\hat{\theta} = \underset{\theta}{\text{argmax } I(\theta)}$$

"Try differentiating"

solve
$$\nabla_{\theta} I = 0$$

$$I(\theta) = \sum_{k=1}^{n} \ln p(\mathbf{x}_{k} \mid \theta)$$

$$\nabla_{\boldsymbol{\theta}} I = \sum_{k=1}^{n} \nabla_{\boldsymbol{\theta}} \ln p(\mathbf{x}_{k} \mid \boldsymbol{\theta})$$

An Example

• Normal distribution, one feature:

$$p(x_k \mid \theta) \sim N(\theta_1, \theta_2)$$

$$\ln p(x_k \mid \theta) = -\frac{1}{2} \ln 2\pi \theta_2 - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

$$\nabla_{\theta} I = \nabla_{\theta} \ln p(x_k \mid \theta) = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \end{bmatrix}$$

An Example

• To maximize, solve:

$$\sum_{k=1}^{n} \frac{1}{\hat{\theta}_{2}} (x_{k} - \hat{\theta}_{1}) = 0$$
$$-\sum_{k=1}^{n} \frac{1}{2\hat{\theta}_{2}} + \sum_{k=1}^{n} \frac{(x_{k} - \hat{\theta}_{1})^{2}}{2\hat{\theta}_{2}^{2}} = 0$$

An Example

• We derived solution as:

$$\hat{\theta}_1 = \frac{1}{n} \sum_{k=1}^n X_k$$

$$\hat{\theta}_2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\theta}_1)^2$$