Bayesian Decision Theory
THE GENERAL CASE

* Finite set of c states of nature
- Wy...0¢
— priors P(wy)... P(0x)

« Measurement is a feature vector
—xda«
— k-dimensional Euclidean feature space
— likelihoods p(x|wy)... p(X|we)

Bayesian Decision Theory
THE GENERAL CASE

» adifferent actions are possible
- C(1...C(a
— Loss functions A(a4]|w)...A(0z] W)




Bayesian Decision Theory
THE GENERAL CASE

 Bayes’s formula again gives:

p(x | w;)P(w;)

P(w; | x) = P(x)

 Evidence now is:

p(x) = ip(x | w,)P(w),)

Bayesian Decision Theory
THE GENERAL CASE

* Risk (expected loss) defined as:

R(a, | x) = ix(a,- | @,)P(w, | X)

» Decision algorithm:
— given X
— choose a; for which R(a; | x) is minimum




Building classifiers

« Bayesian decision theory leads to the
following picture of a classifier:

/ Pick Max \

» g;are called discriminant functions

Sample Discriminant Functions

* Risk:
g; (X) = -R(ax)

/ Pick Max \




Sample Discriminant Functions

e Likelihood:

9/ (x) = P(wix)

/ Pick Max \

Sample Discriminant Functions

« Non-normalized likelihood:

g/ (X) = p(x|w) P(wy)

/ Pick Max \




Sample Discriminant Functions

 Non-normalized log likelihood:
g/ (X) = In p(x]wy) + In P(wy)

/ Pick Max \

Implementing discriminant
functions

 Encodes and exploits assumptions about
the distributions of measurements

* Important special case: normally
distributed measurements




Understanding distributions
CONTINUOUS SCALAR CASE

Expected value of a scalar function

E[fx)] = [ fx) p(x) dx

Mean (expected value of x)

W= Ex] =[x p(x) dx
Variance (expected squared deviation)

0% = E[(x - W) =] (x - W)* p(x) dx
Entropy (negative expected log density)

H(p(x)) = - ElIn p(x)] = - | p(x) In p(x) dx

Univariate Normal Density

 Defined as

_ 1 U 1x-ufU
px) = Ez@%gg

ex
N

* Shorthand:
pP(x) ~ N(U,0%)




Simple Classification Example

» Binary decision from one measurement
— P(ax), P(o)

— p(xjwn) ~ N(ph,04%), p(X|wz) ~ N(U2,02°)
=g/ (%) = In p(Xjw;) + In P(w)

Working out the detalils...

« Calculate g;(x) as:

g,.(x):lnH expﬁ— Bxig%lnP(w)

EIF 5200

—In2n Ino, - BxianP(w)
2 2L 0; [

(X_Ui)z

= - g =Ino; +In P(w,)
o
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Decide wy if g1(X) > ga(X)

e In other words if:

_(e-w) _Ind_C H>—(X_“2)2 ~ind.% H

20-12 [P(w)r 20-22 [P(w,)[

(X_Hl)z < (X_Hz)z +|ntZP(w1)H

20-12 20-22 [Glp((‘)z) [
2 2
CRTCE
20, 20,

Understanding distributions
MULTIVARIATE CASE

« Expected value of a scalar function
— integrate over the whole feature space:
ETAX)] = J (x) p(x) dx
« For vectors, matrices acts componentwise
— Mean (expected value of x)
W= E[x] =[x p(x) dx
W= E[x] = ] xi p(x) dx




Understanding distributions
MULTIVARIATE CASE, CTD

« Covariance (deviation+correlation):
> = E(x —p)(x =)= [ (x = p)(x = )" p(x)ckx
0; = E[(Xi _I-li)(xj - U/)] = [(Xi _I-li)(xj _I-l/)p(x)dx

Multivariate Normal Density

* Defined as
1 01 - []
P(X) = (ZT[)d/ZZ]/ZeXpE_Z(X —H)TZ 1(X _IJ)E

* Shorthand:
p(x) ~ N(u,2)




A Quick Visualization

Probability density falls off in
hyperellipsoids of constant Mahalonobis
distance

r?=(x-p) 7 (x -p)
Covariance determines rotation and shape

Sample multivariate
classification case

Features are statistically independent,
across categories

Features have the same variance o2

Geometric intuition: categories determine
equal-size hyperspherical clusters
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Formal description

« Conditional pdf is normal for each class
p(x | ) ~ N(W,Z)
— mean vector for each class: |,
— covariance matrix > = o~
—determinant |~| = 0%
—inverse > ' = (1/0?)l

Working it through

« By algebra as in univariate case we get:

2
6.00=-""M +inP()

2
o
e But it’'s not necessary to compute
distances:

g,(x) = —le[xTx — 22U + U]+ In P(w)
(0)

XX is the same for all j
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Linear Discriminant Functions

* So equivalently:
_ T
g(X)=w, x+w,

« For weight vector

w'=1

i T g2 M

e and threshold or hias

-1
Wio = ZTIZHTH +InP(w)

The behavior of classifiers

» Decision rule divides feature space into
decision regions

—If gi () > g; (x) for all j, then x is in region /
— Regions separated by decision boundaries
(where largest discriminant functions tie)
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The behavior of linear classifiers

» Decision surfaces are pieces of
hyperplanes g; (X) = g (X)
— Orthogonal to the line between the means
— Shifted from halfway by variance and priors

« Explicitly: wT(x -=x,)=0

W ZH,-—IJ,-
1 0 P(w) [ _
Xo —Z(Hiﬂl/) H,-_HjZInP(wj)(ui H/)
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