Bayesian Decision Theory THE GENERAL CASE

- Finite set of c states of nature
 - $-\omega_1...\omega_c$
 - priors $P(\omega_1)$... $P(\omega_c)$
- · Measurement is a feature vector
 - $-\mathbf{x} \in \Re^{k}$
 - k-dimensional Euclidean feature space
 - likelihoods $p(\mathbf{x}|\omega_1)... p(\mathbf{x}|\omega_c)$

Bayesian Decision Theory THE GENERAL CASE

- a different actions are possible
 - $-\alpha_1...\alpha_a$
 - Loss functions $\lambda(\alpha_1|\omega_1)...\lambda(\alpha_a|\omega_c)$

Bayesian Decision Theory THE GENERAL CASE

• Bayes's formula again gives:

$$P(\omega_j \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_j)P(\omega_j)}{p(\mathbf{x})}$$

• Evidence now is:

$$p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x} \mid \omega_{j}) P(\omega_{j})$$

Bayesian Decision Theory THE GENERAL CASE

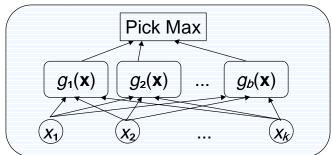
• Risk (expected loss) defined as:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

- Decision algorithm:
 - given x
 - choose α_i for which $R(\alpha_i | \mathbf{x})$ is minimum

Building classifiers

 Bayesian decision theory leads to the following picture of a classifier:



• g_i are called discriminant functions

Sample Discriminant Functions

• Risk:

$$g_{i}(\mathbf{x}) = -R(\alpha_{i}|\mathbf{x})$$
Pick Max
$$g_{1}(\mathbf{x}) \quad g_{2}(\mathbf{x}) \quad \dots \quad g_{a}(\mathbf{x})$$

$$x_{1} \quad x_{2} \quad \dots \quad x_{k}$$

Sample Discriminant Functions

• Likelihood:

$$g_{i}(\mathbf{x}) = P(\omega_{i}|\mathbf{x})$$
Pick Max
$$g_{1}(\mathbf{x}) \quad g_{2}(\mathbf{x}) \quad \dots \quad g_{c}(\mathbf{x})$$

$$x_{1} \quad x_{2} \quad \dots \quad x_{k}$$

Sample Discriminant Functions

• Non-normalized likelihood:

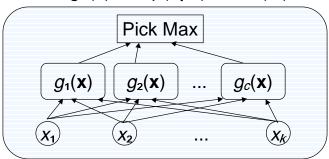
$$g_{i}(\mathbf{x}) = p(\mathbf{x}|\omega_{i})P(\omega_{i})$$
Pick Max
$$g_{1}(\mathbf{x}) \quad g_{2}(\mathbf{x}) \quad \dots \quad g_{c}(\mathbf{x})$$

$$\chi_{2} \quad \dots \quad \chi_{k}$$

Sample Discriminant Functions

• Non-normalized log likelihood:

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i)$$



Implementing discriminant functions

- Encodes and exploits assumptions about the distributions of measurements
- Important special case: normally distributed measurements

Understanding distributions CONTINUOUS SCALAR CASE

• Expected value of a scalar function

$$E[f(x)] \equiv \int f(x) p(x) dx$$

Mean (expected value of x)

$$\mu = E[x] = \int x \, p(x) \, dx$$

• Variance (expected squared deviation)

$$\sigma^2 = E[(x - \mu)^2] = \int (x - \mu)^2 p(x) dx$$

Entropy (negative expected log density)

$$H(p(x)) = -E[\ln p(x)] = -\int p(x) \ln p(x) dx$$

Univariate Normal Density

Defined as

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

· Shorthand:

$$p(x) \sim N(\mu, \sigma^2)$$

Simple Classification Example

- Binary decision from one measurement
 - $-P(\omega_1), P(\omega_2)$
 - $-p(x|\omega_1) \sim N(\mu_1,\sigma_1^2), p(x|\omega_2) \sim N(\mu_2,\sigma_2^2)$
 - $-g_i(x) = \ln p(x|\omega_i) + \ln P(\omega_i)$

Working out the details...

• Calculate $g_i(x)$ as:

$$g_{i}(x) = \ln \left(\frac{1}{\sqrt{2\pi}\sigma_{i}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu_{i}}{\sigma_{i}} \right)^{2} \right] \right) + \ln P(\omega_{i})$$

$$= -\frac{1}{2} \ln 2\pi - \ln \sigma_{i} - \frac{1}{2} \left(\frac{x - \mu_{i}}{\sigma_{i}} \right)^{2} + \ln P(\omega_{i})$$

$$\approx -\frac{(x - \mu_{i})^{2}}{2\sigma_{i}^{2}} - \ln \sigma_{i} + \ln P(\omega_{i})$$

Decide ω_1 if $g_1(x) > g_2(x)$

• In other words if:

$$-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}} - \ln\left(\frac{\sigma_{1}}{P(\omega_{1})}\right) > -\frac{(x-\mu_{2})^{2}}{2\sigma_{2}^{2}} - \ln\left(\frac{\sigma_{2}}{P(\omega_{2})}\right)$$

$$\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}} < \frac{(x-\mu_{2})^{2}}{2\sigma_{2}^{2}} + \ln\left(\frac{\sigma_{2}P(\omega_{1})}{\sigma_{1}P(\omega_{2})}\right)$$

$$\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}} < \frac{(x-\mu_{2})^{2}}{2\sigma_{2}^{2}} + t$$

Understanding distributions MULTIVARIATE CASE

- Expected value of a scalar function
 - integrate over the whole feature space:

$$E[f(\mathbf{x})] \equiv \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

- For vectors, matrices acts componentwise
 - Mean (expected value of x)

$$\mu = E[\mathbf{x}] = \int \mathbf{x} \ p(\mathbf{x}) \ d\mathbf{x}$$

$$\mu_i = E[x_i] = \int x_i \ p(\mathbf{x}) \ d\mathbf{x}$$

Understanding distributions MULTIVARIATE CASE, CTD

• Covariance (deviation+correlation):

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}] = \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \rho(\mathbf{x}) d\mathbf{x}$$

$$\sigma_{ij} = E[(x_i - \boldsymbol{\mu}_i)(x_j - \boldsymbol{\mu}_j)] = \int (x_i - \boldsymbol{\mu}_i)(x_j - \boldsymbol{\mu}_j) \rho(\mathbf{x}) d\mathbf{x}$$

Multivariate Normal Density

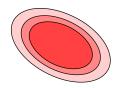
Defined as

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu)\right]$$

• Shorthand:

$$p(\mathbf{x}) \sim N(\mu, \Sigma)$$

A Quick Visualization



 Probability density falls off in hyperellipsoids of constant Mahalonobis distance

$$r^2 = (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})$$

• Covariance determines rotation and shape

Sample multivariate classification case

- Features are statistically independent, across categories
- Features have the same variance σ^2

• Geometric intuition: categories determine equal-size hyperspherical clusters

Formal description

· Conditional pdf is normal for each class

$$p(\mathbf{x} \mid \omega_i) \sim N(\mu_i, \Sigma)$$

- mean vector for each class: µ/
- covariance matrix $\Sigma = \sigma^2$
- determinant $|\Sigma| = \sigma^{2k}$
- inverse $\Sigma^{-1} = (1/\sigma^2)I$

Working it through

• By algebra as in univariate case we get:

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}\|^2}{2\sigma^2} + \ln P(\omega_i)$$

But it's not necessary to compute distances:

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} \left[\mathbf{x}^\mathsf{T} \mathbf{x} - 2\mu^\mathsf{T} \mathbf{x} + \mu^\mathsf{T} \mu \right] + \ln P(\omega_i)$$

 $\mathbf{x}^{\mathsf{T}}\mathbf{x}$ is the same for all *i*

Linear Discriminant Functions

· So equivalently:

$$g_i(\mathbf{x}) = \mathbf{w}_i^{\mathsf{T}} \mathbf{x} + w_{i0}$$

• For weight vector

$$\mathbf{w}_{i}^{\mathsf{T}} = \frac{1}{\sigma^{2}} \mu_{i}$$

· and threshold or bias

$$W_{i0} = \frac{-1}{2\sigma^2} \mu^T \mu + \ln P(\omega_i)$$

The behavior of classifiers

- Decision rule divides feature space into decision regions
 - If $g_i(\mathbf{x}) > g_j(\mathbf{x})$ for all j, then \mathbf{x} is in region i
 - Regions separated by decision boundaries (where largest discriminant functions tie)

The behavior of linear classifiers

- Decision surfaces are pieces of hyperplanes $g_i(\mathbf{x}) = g_j(\mathbf{x})$
 - Orthogonal to the line between the means
 - Shifted from halfway by variance and priors
- Explicitly: $\mathbf{w}^{\mathsf{T}}(\mathbf{x} \mathbf{x}_0) = 0$

$$\mathbf{w} = \mu_i - \mu_j$$

$$\mathbf{x}_{0} = \frac{1}{2} \left(\mu_{i} + \mu_{j} \right) - \frac{\sigma^{2}}{\left\| \mu_{i} - \mu_{j} \right\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} \left(\mu_{i} - \mu_{j} \right)$$