Bayesian Decision Theory

- fundamental statistical approach to pattern classification using
- probability of classification
- cost of error

Sample classification scenario

- The CMU Robotics Institute has built an autonomous robot for NASA to search for meteorites in Antarctica
- there are lots of meteorites in Antarctica; they fall, land on the ice, and stay
- the environment is too inhospitable for human researchers to retrieve them
- practice for Moon, Mars

Sample classification scenario

- The robot's rock detector goes off
- There's either a terrestrial rock or a meteorite
- Questions now:
- What does the robot conclude?
- What should the robot do?

Formal description

- Nature is in one of two states
- variable ω : state of nature
- value $\omega=\omega_{1}$: earth rock
- value $\omega=\omega_{2}$: space rock

Formal description CTD

- As state of nature is so unpredictable, we describe variable ω probabilistically
- A priori probabilities (priors)

$$
\begin{aligned}
& P\left(\omega_{1}\right) \\
& P\left(\omega_{2}\right)
\end{aligned}
$$

- Positive, sum to one
- Specify our knowledge of how likely any Antarctic rock is to be from earth or space

Decision Rules

- Say the robot must decide on the rock (without knowing anything else about it)
- Probabilistic decision rule decide ω_{1} if $P\left(\omega_{1}\right)>P\left(\omega_{2}\right)$ otherwise decide ω_{2}

Risk

- NASA didn't send you all the way to Antarctica to sit on the tundra and sulk
- Two possible actions
$-\alpha_{1}$: leave rock alone
- α_{2} : pick it up
- Loss associated with action in state

$$
\lambda\left(\alpha_{i} \mid \omega_{j j}\right)-\text { abbrev: } \lambda_{i j}
$$

- For now, assume $\lambda_{i i}=0$

Risk
 CTD

- Risk is expected loss, here

$$
R\left(\alpha_{i}\right)=\lambda_{i 1} P\left(\omega_{1}\right)+\lambda_{i 2} P\left(\omega_{2}\right)
$$

- Choose action to minimize risk

> If $R\left(\alpha_{1}\right)<R\left(\alpha_{2}\right)$ then do α_{1}; otherwise do α_{2}

- Concretely:

$$
\text { If } \lambda_{12} P\left(\omega_{2}\right)<\lambda_{21} P\left(\omega_{1}\right) \text { then do } \alpha_{1} \text {; }
$$ otherwise do α_{2}

Adding some evidence

- First case: continuous measurement
- Example, for Antarctic robot
- Visual rock detector gives you back an estimate of the redness of the rock
- Meteors tend to be redder than earth rocks (because they're more likely ferrous)
- So redness is useful information

Formalism

- Measurement x
- Class-conditional probability density fn

$$
p\left(x \mid \omega_{j}\right)
$$

- assumes nature is in ω_{j}
- describes for each possible measurement x its likelihood relative to other possible measurements

$$
\int p\left(x \mid \omega_{j}\right) d x=1
$$

Problem statement

- Suppose we know
- Priors $P\left(\omega_{j}\right)$ (for each j)
- Likelihood $p\left(x \mid \omega_{j}\right)$ (for each $)$
- Measurement x
- How does this influence our attitude concerning the true state of nature?

Answer
 PART 1

- Whatever ω is, say $\omega_{\text {, }}$, it's combined with x now - as characterized by density

$$
p\left(\omega_{j}, x\right)
$$

- We can understand this in two ways
- from x, determine ω_{j}

$$
p\left(\omega_{j}, x\right)=P\left(\omega_{j} \mid x\right) p(x)
$$

- from ω_{j}, determine x

$$
p\left(\omega_{j}, x\right)=p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)
$$

Answer
 PART 2

- We only know we have x; we want to compare alternative
- From before

$$
P\left(\omega_{j} \mid x\right) p(x)=p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)
$$

- Thus

$$
P\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{p(x)}
$$

- Bayes's formula

$$
\text { posterior }=\text { likelihood } \times \text { prior } / \text { evidence }
$$

Bayes Decision Rule

- Algorithm for minimizing expected error
- in binary statistical decision
- Given measurement \boldsymbol{x}
- If $P\left(\omega_{1} \mid x\right)>P\left(\omega_{2} \mid x\right)$
- decide ω_{1}
- Otherwise
- decide ω_{2}

Justification

- In any case

$$
P(\text { error } \mid x)=\left\{\begin{array}{l}
P\left(\omega_{1} \mid x\right) \text { if we decide } \omega_{2} \\
P\left(\omega_{2} \mid x\right) \text { if we decide } \omega_{1}
\end{array}\right.
$$

- Overall

$$
\begin{aligned}
& P(\text { error })=\int P(\text { error }, x) d x \\
& =\int P(\text { error } \mid x) p(x) d x
\end{aligned}
$$

- Our algorithm makes $P($ error | x) as small as possible, which minimizes integral here

A Step Back

- By Bayes's formula, decision is

$$
\frac{p\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right)}{p(x)}>\frac{p\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)}{p(x)}
$$

- Scale factor $p(x)$ has no impact on decision:

$$
p\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right)>p\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

A Step Back

- Two cases for:

$$
p\left(x \mid \omega_{1}\right) P\left(\omega_{1}\right)>p\left(x \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

- No info from test:

$$
\begin{gathered}
\text { decide } P\left(\omega_{1}\right)>P\left(\omega_{2}\right) \\
p\left(x \mid \omega_{1}\right)=p\left(x \mid \omega_{2}\right)
\end{gathered}
$$

- No background preference:

$$
\begin{gathered}
\text { decide } p\left(x \mid \omega_{1}\right)>p\left(x \mid \omega_{2}\right) \\
P\left(\omega_{1}\right)=P\left(\omega_{2}\right)
\end{gathered}
$$

