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Bayesian Decision Theory

• fundamental statistical approach to
pattern classification using
– probability of classification

– cost of error

Sample classification scenario

• The CMU Robotics Institute has built an
autonomous robot for NASA to search for
meteorites in Antarctica
– there are lots of meteorites in Antarctica;

they fall, land on the ice, and stay

– the environment is too inhospitable for
human researchers to retrieve them

– practice for Moon, Mars
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Sample classification scenario

• The robot’s rock detector goes off
• There’s either a terrestrial rock or a

meteorite
• Questions now:

– What does the robot conclude?

– What should the robot do?

Formal description

• Nature is in one of two states
– variable ω: state of nature

– value ω=ω�: earth rock

– value ω=ω�: space rock
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Formal description
CTD

• As state of nature is so unpredictable, we
describe variable ω probabilistically
– A priori probabilities (priors)

P(ω�)

P(ω�)
– Positive, sum to one

– Specify our knowledge of how likely any
Antarctic rock is to be from earth or space

Decision Rules

• Say the robot must decide on the rock
(without knowing anything else about it)

• Probabilistic decision rule
decide ω� if P(ω�) > P(ω�)

otherwise decide ω�
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Risk

• NASA didn’t send you all the way to
Antarctica to sit on the tundra and sulk

• Two possible actions
– α�: leave rock alone

– α�: pick it up
• Loss associated with action in state

λ(α4 | ω5) - abbrev: λ45

– For now, assume λ44 = 0

Risk
CTD

• Risk is expected loss, here
R(α4) = λ4� P(ω�) + λ4� P(ω�)

• Choose action to minimize risk
If R(α�) < R(α�) then do α�;

otherwise do α�

• Concretely:
If λ�� P(ω�) < λ�� P(ω�) then do α�;

otherwise do α�
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Adding some evidence

• First case: continuous measurement
• Example, for Antarctic robot

– Visual rock detector gives you back an
estimate of the redness of the rock

– Meteors tend to be redder than earth rocks
(because they're more likely ferrous)

– So redness is useful information

Formalism

• Measurement x
• Class-conditional probability density fn

p(x | ω5)

– assumes nature is in ω5

– describes for each possible measurement
x its likelihood relative to other possible
measurements

∫ p(x | ω5) dx = 1
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Problem statement

• Suppose we know
– Priors P(ω5) (for each j)
– Likelihood p(x | ω5) (for each j)
– Measurement x

• How does this influence our attitude
concerning the true state of nature?

Answer
PART 1

• Whatever ω is, say ω5, it’s combined with x
now - as characterized by density

p(ω5, x)
• We can understand this in two ways

– from x, determine ω5

p(ω5, x) = P(ω5 | x) p(x)

– from ω5, determine x
p(ω5, x) = p(x | ω5) P(ω5)
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Answer
PART 2

• We only know we have x; we want to
compare alternative

• From before
P(ω5 | x) p(x) = p(x | ω5) P(ω5)

• Thus

• Bayes’s formula
posterior = likelihood × prior ⁄ evidence
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Bayes Decision Rule

• Algorithm for minimizing expected error
– in binary statistical decision

• Given measurement x
• If P(ω� | x) > P(ω� | x)

– decide ω�

• Otherwise
– decide ω�
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Justification

• In any case

• Overall
P(error) = ∫ P(error,x) dx

= ∫ P(error | x) p(x) dx
• Our algorithm makes P(error | x) as small

as possible, which minimizes integral here
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A Step Back

• By Bayes’s formula, decision is

• Scale factor p(x) has no impact on
decision:

p(x | ω�) P(ω�) > p(x | ω�) P(ω�)
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A Step Back

• Two cases for:
p(x | ω�) P(ω�) > p(x | ω�) P(ω�)

• No info from test:
decide P(ω�) > P(ω�)

p(x | ω�) = p(x | ω�)
• No background preference:

decide p(x | ω�) > p(x | ω�)

P(ω�) = P(ω�)


