
CS 520 — Artificial Intelligence
Assignment One

Out: Feb 14, 2000
Due: March 1, 2000

Written Exercises
Problem 1. Consider the following decision rule for a two-category one-dimensional problem: de-
cide ω1 if x> θ; otherwise decide ω2.

(a) Show that the probability of error for this rule is given by

P(error) = P(ω1)
Z θ

−∞
p(x|ω1)dx + P(ω2)

Z ∞

θ
p(x|ω2)dx

(b) By differentating, show that a necessary condition to minimize P(error) is that θ satisfy

p(θ|ω1)P(ω1) = p(θ|ω2)P(ω2)

(c) Does this equation define θ uniquely?

(d) Give an example where a value of θ satisfying the equation actually maximizes the probability
of error.

Note: for a discussion of probability of error and classification see lecture notes for Jan 26.

Problem 2. Show that if our model is poor, the maximum likelihood classifier we derive is not
the best—even among our poor model set—by exploring the following example. Suppose we have
two equally probable categories (i.e., P(ω1) = P(ω2) = 0.5). Further, we know that p(x|ω1) ∼
N(0,1) but assume that p(x|ω2) ∼ N(µ,1). (Thus, µ is the parameter we seek to estimate by
the method of maximum likelihood.) Imagine however that the true underlying distribution is
p(x|ω2)∼ N(1,106).

(a) What is the value of our maximum likelihood estimate µ̂ in our poor model, given a large
amount of data?

(b) What is the decision boundary arising from this maximum likelihood estimate in the poor
model?

(c) Ignore for the moment the maximum likelihood approach, and use the methods described
in class on Jan 31 to derive the Bayes optimal decision boundary given the true underlying
distributions— p(x|ω1)∼N(0.1) and p(x|ω2)∼N(1,106). Be careful to include all portions
of the decision boundary.

(d) Now consider again classifiers based on the (poor) model assumption p(x|ω2)∼N(µ,1). Us-
ing your result immediately above, find a new value of µ that will give lower error than the
maximum likelihood classifier.
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Note: maximum likelihood estimation was the topic of the lecture on Feb 2, and MLE for Normal
distributions is covered in the day’s lecture notes.

Problem 3. Consider an extreme case of the general issue discussed in problem 2, one in which
it is possible that the maximum likelihood solution leads to the worst possible classifier, i.e., one
with an error that approaches 100% (in probability). Suppose our data in fact comes from two one-
dimensional distributions of the forms

p(x|ω1)∼[(1− k)δ(x−1)+ kδ(x + X)] and
p(x|ω2)∼[(1− k)δ(x + 1)+ kδ(x−X)]

X is a positive real number; k lies in the range 0 ≤ k < 0.5 and represents the portion of the to-
tal probability mass concentrated at the point ∓X; δ(x) is the Dirac delta function—which has a
nonzero only at the point x = 0 but nevertheless integrates to one.

Suppose our (poor) models are of the form p(x|ω1)∼ N(µ1,σ2
1) and p(x|ω2)∼ N(µ2,σ2

2) and
we form a maximum likelihood classifier.

(a) Consider the symmetries in the problem and show that in the infinite data case the decision
boundary will always be at x = 0, regardless of k and X.

(b) Recall that the maximum likelihood estimate of either mean, µ̂i, is the mean of its distribution.
For a fixed k, find the value of X such that the maximum likelihood estimates of the means
“switch”, i.e., where µ̂1 ≥ µ̂2.

(c) Find a dependence X(k) which will guarantee that the estimated mean µ̂1 for p(x|ω1) is less
than zero. (By symmetry, this will also ensure that µ̂2 > 0.)

(d) Given your X(k) just derived, state the classification error in terms of k.

(e) Discuss how if our model is wrong (here, if it does not include the delta functions), the error
can approach 100% (in probability). Does this surprising answer arise because we have found
some local minimum in parameter space?

Computer Exercises
This problem asks you to implement two classifiers for multivariate, normally-distributed
measurements—one based on the linear discriminant functions described in class on January 31;
and another based on the nearest neighbor heuristic described in class on February 9.

To test and analyze your classifiers, I have provided a program called gen data. It is available
on paul as—

/grad/u1/mdstone/520/gen data

If you prefer to work elsewhere, on another machine, you can obtain the source code from—

http://www.cs.rutgers.edu/˜mdstone/class/520/gen data.c

and compile it yourself (just be sure to link against the math libraries: on unix, cc gen data.c -lm).
The program works with multivariate distributions that satisfy the assumptions of linear clas-

sifiers: all the features are independent and across classes each feature has a variance of σ2. A
classification setup is then specified by
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• the number of states of nature c

• the dimensionality of the feature spaces k

• the standard deviation parameter σ for the problem

• for each class ωi, the prior probability P(ωi) and the k-component mean parameter µi

gen data expects to read off these parameters in order off the standard input. For example, take
this sample input—

2 4 1.0
0.25 1 2 2 1
0.75 2 1.5 1.5 1.5

So it describes a binary classification problem, involving measurements with four components and
unit variance. The first class, representatives of which appear a quarter of the time, is characterized
by the prototype µ1 = 〈1,2,2,1〉. The second class, representatives of which appear three-quarters
of the time, is characterized by the prototype µ2 = 〈2,1.5,1.5,1.5〉. gen data expects a single
number n on the command line; it then writes to stdout:

• A single line containing the number of classes, the number of features, and the number of
samples to follow in the file; then

• A sequence of n measurements drawn from the classification problem specified on stdin,
one per line thereafter, in the form:

cx1x2(. . .)xk

where c is the state of nature behind the measurement and x1 through xk provide space-
delimited values for each component of the measurement.

If you save your classification problem as a file dist — for distribution — then you would
typically run gen data with something like

gen data 200 < dist > test.data

By the way, the reason this program is provided here is that the code to sample from a Gaussian is
weird and not particularly illuminating.

Program 1. Write a program p1 as follows. Read in a datafile of samples in the format output
by gen data and output the maximum likelihood estimate of the parameters of the classification
problem from which the samples were drawn; it may be convenient to accept the datafile on standard
input and to output the parameter estimate in the format accepted by gen data.

In estimating the variance computationally, it is useful to observe the equivalence

∑
j

(xi j− µ̂i)2 = (∑
j

x2
i j)−nµ̂2

i
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Program 2. Write a program p2 as follows. Read in a parameter estimate for the classification
problem and a datafile of samples. Construct the Bayes-optimal linear decision algorithm for the
classification problem and calculate the classifications assigned to each sample. Tabulate the results
of the classification in a confusion matrix M. Mi j gives the number of test points of class i that were
classified as belonging to class j. As the output of the run, p2 should report the confusion matrix
and also the overall error rate for your classifier.

It may be convenient to accept the parameter estimates on stdin and to give the file name
for the test data as a command-line argument; that way you can use commands to sequence the
programs you write together such as

p1 < train.data | p2 test.data

Program 3. Write a program p3 as follows. p3 should input a training file of samples output for a
classification problem; then it should read in a test file of samples output from the same classification
distribution. It should classify each test point with the same label found with the nearest neighbor
to the test point in training data.

Again, report results as a confusion matrix and an overall error rate; if you take the test samples
on the command line and read the training data from standard input, it may give some consistency
and some opportunities for running the classifier piped with other programs.

Analysis 1. Check your results in p1 informally by comparing the estimated parameters to the
parameters that produced the training data. Do means and variances converge as you would expect,
given more data?

Analysis 2. Design a classification problem in which you expect nearest neighbor and linear clas-
sifiers to have the same performance. Construct training and test data for your problem using
gen data. Exhibit the classification problem and the output for p1|p2 and p3. Explain the re-
sults; show in particular that the confusion matrices you produce are characteristic of the two algo-
rithms.

Analysis 3. Design a classification problem in which you expect nearest neighbor to do distinctly
worse than a linear classifiers. Construct training and test data for your problem using gen data.
Exhibit the classification problem and the output for p1|p2 and p3. Explain the results; show in
particular that the confusion matrices you produce are characteristic of the two algorithms.
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