Notes on Proof and Proof Search
DCS 440, Al —Fall 1999
Matthew Stone

We areinvestigating logic so asto better understand the overall conceptua back-
ground underlying the majority of Al research. In this picture, we want to design
and build a computational artifact—a program—to carry out some task in the real
world; we view the program as an agent acting in its environment. Logical results
tell us how the agent can have a representation, viewed a sentencein aformal lan-
guage, which makes a claim about a real-world relationship—this is the province
of semantics—and tell us how the agent can use that representation to make correct
decisions about the world—thisis the province of proof theory.

These notes comein two parts. Thefirst part, represented by sections 1 through
5, provides documentation for the results presented in class about semantics, the
structure of proofsand the use of proofsto represent arguments, for examplein our
New Brunswick route planning problem.

The second part, which consists just of section 6, considers the algorithms and
data structures you need to build proofs effectively. This section providesalogical
perspective on the operations Prolog does when proving a query, and it also care-
fully introduces an aternative strategy for executing knowledge bases bottom up.
Like the first part, the second part provides mathematical detail about material that
isimportant to Al and is only covered very informally in the text. The second part
also includes some formal details that | can present only in broad strokes in class,
but that allow you to be very precise about why the logical results about proofsthat
we studied apply very directly to the Al systems that have been written to carry out
representation and reasoning problemsfor agents. In particular, even though Prolog
does some very funny computations involving rule selection, unification and back-
tracking search, thisisexactly what isrequired to use Prol og clauses to derive correct
conseguences of a description.

1 Background
The representations we' re investigating are asimple form of knowledge base (KB);
which are constructed in terms of terms and predicates.

Termstaketwo forms. Thereare constants, conventionally writtenwith symbols
beginning with lower case letters, which the designer of aKB intendsto correspond
to specific real-world objects. Then there are variables, conventionally written with
symbols beginning with upper case |etters (or underscores), which the designer of a
KB intendsto range over the real-world objectsthat arerelevant to the task at hand.

Predicates, like constants conventionally written with symbols beginning with
lower case |etters, are names the designer gives to real-world relationships. Predi-
cates have arities (a mathematician’s pun generalizing unary, binary, ternary, etc.)

that says how many objects stand in the corresponding relationship in the world.
Together the set of constants and predicates that are relevant to the designer’s
task determine the language of the knowledge base for that task.
The claimsthat can figurein aknowledge base are called definite clauses. Terms
and predicates can be assembled into two kinds of clause. An atomic clauseis an
expression of the form

p(tl, ey tm)

where p isan mary predicate and each t; isaterm. It is understood as making the
claim about the world that the objects designated by those terms stand in the rela
tionship represented by the predicate.

A ruleis an expression of theform

h—DbiA...bn

wherehisan atomic clause (called the head of therule) and each b; isanother atomic
clause. (The conjunction by A...by iscalled the body of therule.) A ruleisunder-
stood as making the claim about the world that in any cases where each clausein the
body of the rule makes atrue claim about the world, the head of the rule also makes
atrue claim about the world.

Clauses are called ground when they contain no variables.

A knowledge base is simply a set of definite clauses. Informally, it collectively
claims that the world matches each of the clausesin it.

Compare page 30, ClI

2 Semantics

An interpretation formalizes the process of making claims about the world that we
saw in the informal motivation of knowledge bases. An interpretation is a triple
(D, @,) where:

e D isaset of objects, called the universe or domain of the interpretation. (Do-
mainisoverloaded; | prefer touseitinitsinformal sense, meaning acoherent
set of real-worldtasksthat can be solved using acoherent body of knowledge.)

e (@isamap associating each constant c in the language with an element ¢(c) of
D.

e TTiSamap associating each n-ary predicate p in the language with a function
fromD" «— T, L.

To describe general claims, we aso introduce assignments to temporarily link
each variableto an object; formally an assignment isamap p associating an el ement
p(X) of D with each variable X. Now we can introduce theidea of the denotation of

atermt on an assignment p—written d(t, p), which formalizesthe real-world object
that aterm picks out in a particular case (asrequired in arule, say).

[o(t) if t isaconstant
6“*”“{pa)ﬁtSavmee

Given an interpretation, we can combine the denotation of terms with the func-
tional relationship associated with predicates to say when aclause istrue at an as-
signment (in that interpretation).

e p(ty,...,tm) istrueat p just in case
T(P)(8(t1,P); .- -, 0(tm,P)) =T

e h—DbyA...bpistrueat p just in case either histrue at p or some b; is not
true at p.

A clauseistrue (in an interpretation) if and only if it's true at every assignment (in
that interpretation). A knowledge base is true (in an interpretation) if and only if
every clauseinitistrue (in that interpretation).

A knowledge base K entails f (written K |= f) if and only if f istrunin every
interpretation in which K is true. We will focus on the case where f is a ground
clause.

Compare page 34-36, Cl

3 Proof
A proof is adata structure that describes why a knowledge base entails some fact
in a concrete form that a computer program can construct or check.

WEe'll think of a proof isatree of judgments. A judgment takes the form

K—f

(read f followsfrom K.) K isaknowledge base and f isaground clause.

There are two basic computational operations—algorithms—that go into con-
structing proofs. Thefirst operationisapplying asubstitution. Informally, thisalgo-
rithmisacomputationa simulation of the way assignmentsallow variablesto range
over all elements of the universe of an interpretation.

A substitution o is afinite set of the form

{M1/t1,...,Va/tn}

HereV; isavariable and t; isaterm; Vi/t; is called abinding. (For some technical
conditions on substitutions, see page 52, Cl; animportant one hereisthat no variable
occursintwo bindingsV /t; andV /t,.) The application of o to an expression e (like

3

atermor aclause or even aproof, aswe'll see) consists of ewith each occurrence of
avariableV; replaced by an occurrence of the correspondingt;. It iswritten eo; the
expression eo is called an instance of €; the process of going frometo o iscalled
instantiation.
This first operation alows us to say what the simplest proofs are, the leaves.
Leaves take the form
K,e— eo

Inother words, at |eaves, you arguethat aground clause ec followsfrom the because
the ground clause explicitly names one of the cases where a more general clause e
applies.

The second operation is matching identical formulas, which provides an algo-
rithmfor combining smaller proofstogether to makelarger proofs. To match proofs,
you only have to look at the judgment at the root of the proof: the knowledge base
and the ground clause that followsfromit. So when you describe matching proofs,
you write a proof thisway

P

K—f

P names the whole proof; K — f names the judgment at the root of the proof.
Suppose you have m+ 1 proofs that match together as follows:

I:)O I:)1 I:)m
K—h«DbiA...Abm K—Db K — bm

Then you can combine these proofs together into a single larger proof written like
this:

P P, Pm
K—=h«DbiA...Abm K—-b 7 K—bny
K—h
When we have a proof
P
K—f

we say f isprovablefromK, or K |- f.

4 Proof, semantics and computation
Proofs are defined completely syntactically, without any reference to how the sym-
bolsareinterpreted. Thisisessential to therolethat proofsplay inthe Al picture of
an agent initsenvironment. The agent only has accessto its representations; and all
it can do with them is carry out syntactic manipulations on them. So thisis what it
has to use in making its decisions.

So the picture we have needs to be compl eted by relating the proofs that an agent
can construct with the information that we understand the agent to have, given the

4

meaning of its knowledge base. This relationship takes the form of two mathemat-
ical results, soundness and compl eteness.

4.1 Soundness

Soundness states that if K- f then K |= f. We prove this in two steps correspond-
ing to the two kinds of operations that go into constructing proofs. applying sub-
stitutions and combining proofs together. Each steps some insights into why it is
possible for a syntactic algorithm to correctly simulate the semantic process of in-
terpretation.

Step 1. Instep 1, we prove that, in any interpretation |, if aclause eistruethen
any ground clause eg istrue. To show that eo istrue, we must show that ec istrueat
any assignment p. Todo that, wewill consider an arbitrary such p; wewill construct
anew assignment, pg and apply the assumption that eistrueat pgs. We choose pg in
such away that the semantic assignment corresponds to the syntactic substitution;
this makes the truth e true at pg the same thing as the truth of eo at p.

Here's how it works. Writeo out in full as

{M1/t1,...,Va/tn}

Now, we can explicitly consider the effect of o on the interpretation of terms. Sup-
pose we want to find the denotation at p of atermt that occursin e, which we have
rewritten using o to an occurence of to in eo. Recall that thisis given by d(to, p):

_ | @(to) if to isaconstant
o(ta,p) = { p(to) if to isavariable

Now, let’s flesh out this out using what we know about the substitution. Ift isa
constant, to isjust t. Substitutionsonly affect variables. If t isavariableV; onwhich
o isdefined, thento isthe corresponding tj. Asit happens, thet we are considering
fall into one of these cases; but otherwise, we would have t unaffected by o too; it
doesn’'t hurt to write this case down too.

@(t) if t isaconstant
o(to,p) =< @) if Vi/tjisino
p(t) if t isavariable with no binding in o

Now, we can set up pg so that d(t, pg) = d(ta, p)—and echo the substitution seman-
tically. Explicitly, po is:

V) = o) ifV/tiisino
PolV) = p(V) if Visavariablewith no bindingin o

In each of the cases for t—constant, variable with abinding in o, variable with no
binding in c—we see that 3(t, pg) by this definition does coincide with 3(to, p).

5

We now use pg. Suppose e isan atomic clause:

p(t17 .. .,tm)

Theneois
p(t10,...,tmo0)
eo istrueat p just in case

(p)(3(410,p),. .., d(tmo,p)) = T
= T(p)(3(t1,Po);- -, O(tm, Po)) = T

that is, just in case, eistrueat pg.
Supposeeisarule
h—byA...bn

Theneois
ho —bioA...bmo

eo istrueat p just in case
hoistrueat p or somebjo isfaseat p.

By the argument we just gave for atomic formulas, thisis equivalent to
histrueat p; or someb; isfaseat pg.

And thisis equivalent to the condition that eistrue at pg. ®

This argument contains the nugget of an induction on the structure of formulas;
thiskind of arguments arguesthat any representation has aproperty by showing first
that the simplest representations have this property and then that any way of build-
ing alarger representation representation out of smaller ones preservesthisproperty.
The complexity of aclauseislimited: you have either atoms or rules. Given arep-
resentational system that had more ways to make claims about the world this kind
of argument would be even moreimportant. For example, we can use the same kind
of induction to describe proofs which can already grow substantially, even in the
simple language we have. Thisis step 2 of the soundness argument.

Step 2. We provethat if K- f then K |= f. First, we consider leaf proofs

K,e—=eo

Suppose K, eistruein someinterpretation. Then in particular eistruein that inter-
pretation. By what we proved in step 1, then, eo is also true in that interpretation.
Sincethisistrue of any interpretation, we have in other words

K.e=eo

Now, we consider a proof formed recursively:

Py Py P
K—he—bA...Abn K—=Db " K—bn
K—h

We supposethat whenever thereisaproof smaller than thisonewhose root judgment
isK — f, thenK |= f. We use this to show that K — h here.
Explicitly, we consider each of the judgments

K—b

K_"bm

Eachistheroot of asmaller proof. Thereforeif we consider any interpretation where
Kistrue,h«— by A...Abm, by, ...by areall true. Consider an assignment p; applying
the clause for interpreting arule, we see that either histrueat p or someb; isfalse
at p. But no b; can be false at p; this means that h must be true at p. Since p was
arbitrary, histruein that interpretation: K = h.

We now conclude that whenever we construct a proof with root judgment K —
f,thenK |= f: it'strueof simpleproofsandit’strueof any proof webuild of simpler
proofsthat have this property. SOK - f impliesK |= . ®

4.2 Completeness

In general, completeness states that when K |= f, K+ f. It says that any true state-
ment can be derived. Another way to understand it is by taking the contrapositive:
K1/ f impliesK [~ f. If thereisno proof of afact fromaknowledge base, then there
is some model of the knowledge base where the fact does not hold. Computation-
ally, that meansthat in a systematic attempt to build aproof for some conjecturethat
fails, thereisall theinformation you need to construct amodel where the conjecture
isfase.

We will prove case of completeness where thereis a particularly clear relation-
ship between an algorithmic attempt to build a proof and a specia kind of model.
Thisisthe case where f isaground atomic clause and the model you look at isthe
canonical or minimal model whereasfew ground atomic clauses aretrue aspossible.

Step 1. We construct aminimal model for a knowledge base K. The model con-
sists of auniverse, an interpretation for the constants, and an interpretation for the
predicates in the knowledge base. Now, the model will give “arobot’s solipsistic
view of theworld”, so it will just have placeholdersfor all of the objects named in
theknowledge base. Therobot, inits syntactic confines, needs placehol ders because
it does not (and cannot) have any ideawhat itsdesigner intended its constantsto des-

ignate. To start, the constants themselves make good placehol ders, so we set

Dum = {c:cisaconstant inthe knowledge base }
or {0} if no constants appear in the knowledge base

Now the interpretation of a constant is just the placeholder we're using for the con-
stant’s value, which boils down to this simple defintion of @y:

Pum(c)=c

Now what about the predicates? The robot knows, by building proofs, that it should
include a placeholder for some real-world relationships, but it doesn’t know about
anything else. So, inthe minimal model, we set Ty (p) to be the function f, defined
by:

folty, -) = { 1 otherwise

So our minima model Iy = (Dy, @u, Tiw)-

| have been talking like the minimal model of the knowledge base provides an
interpretation wheretheknowledge baseistrue. That iscorrect, but we haveto prove
it. Toshow every f inK istruein Iy, we deriveacontradiction from the assumption
that some f in K isfasein ly. This contradiction relies on using the ssmulation
between assignments and substitutions we saw above, only in the reverse direction.

The contradiction also relies on the proposition that if there is a proof P con-
sisting of the leaf K,e — eo then ec istruein l. Thisisnot just a special case
of soundness because we don’'t yet know that Iy is a model of K. So we prove
this proposition directly; it is not hard. First, suppose eo isaground atomic clause
p(ty,...,tn); then poistrueinly justin casethereisaproof of p(ty,...,tn); of course
P isthat proof.

Otherwise, suppose eo is a ground rule ho < b;o A ... Abno. Consider an
assignment p; there are two cases. Suppose some bjo is false at p; then ho
bioA...Abnoistrueat p. Otherwise, supposeeach bjoistrueat p; sinceeachbjois
atrueground atomic clauseat p, theremust beaproof of K — bjo ineach case. We
can combine these proofswith the proof P to obtain a proof whose root is the judg-
ment K, e — ho. So ho must be true at p, and thustheruleho <— bio A ... Abmo
isasotrueat p.

Now wecan returnto themainlineof theargument. Call the putativefalseclause
in our knowledge base €; there must be some assignment p such that eisfalse a p.
Thisassignment takes each variableV; that occursin eto someelementin D, p(V;)—
in other words, to sometermt;. Since only finitely many variablesoccur in e, we can
define a substitution o by

{Vi/ti : Vi occursineand p(V;) =t}

Now, using the notation of soundness, step 1, p = pg and eistrue at pg just in case
eo istrueat p. But ec isaground formula. Sothereisaproof K,e — eg. And so,

8

by the proposition, ec istrue in the interpretation. Thisisa contradiction, so there
can be no false clause in our knowledge base; Iy isamodel of K. ®

Step 2. We can now argue immediately that, given a ground atomic clause f,
whenK = f, K+ f. For consider ly. If K |= f then f istruein Iy (at any assignment
p). But by the construction of truthin Iy, that means that thereisaproof of f! ®

While we have proved a specia case of completeness, completenessistruein
genera for the kind of language we have here; however, it has to be proved in a
different way. To start, you need an additional rule for building proofs:

P
K.,by,...,bm—h

What’'s more, you cannot construct a single countermodel to any conjecture; you
need to construct a distinct model for each formula f for which there is no proof.
WEe'll leave such arguments for ahard-core logic course.

5 Using proofs

We can now connect thelogical work we didin Sections 1 through 4 with the picture
of an agent acting initsenvironment that we want to understand more precisely. The
agent’s representation of the world is its knowledge base. With the semantics for
terms, clauses and knowledge bases that we considered in Section 2, we can say
what claim that knowledge base makes about the world. Put another way, we can
characterize what the world must be like if that knowledge base istrue.

The agent can use its knowledge base by constructing proofs. Suppose the agent
needsto know whether aspecificfact f istrue; if the agent can construct aproof of f
fromits knowledge base, it can con concludethat if the world isthe way the knowl-
edge base saysit is, then f must actually be truein the world. On the other hand, if
the agent tries all possible waysto construct a proof of f and isunableto do it, then
it can conclude that the knowledge base could betrue and still f could befalse. This
is the content of the results about models and proofs presented in Section 4.

This view of the use of proofsgivesriseto the ideaof queriesand answers. We
will define a query as an expression of the form:

K—f

Inthisexpression, f isanatomicclause, possibly containing variables; the ?notation
indicatesthat this query representsarequest to proveinstancesof f fromK. We can
also use the notation ?f for queries when the knowledge base K is understood in
context (that's what the book does).

An answer gives a possible response to a query; an answer is either positive or
negative. A positive answer consists a substitution o together with aproof of K —
fo. A negative answer isjust the symbol no; it indicates that the knowledge baseis
compatible with all instances of f being false.

9

River Roud O
rro
River Road West
rrw

Landing Lane Bridge
I'l'b

Landing Lane
I

Huntington West

hw George South

College Ave

Figure 1: A schmatic map of some of New Brunswick and Piscataway

Posing queries and deriving answers gives away for an agent to make decisions.
Suppose an agent has a control program in which each possible action is associated
with aquery that sayswhat the world must be likefor that action to be an appropriate
one. To choose its next action, the agent evaluates al of the queries, and picks one
with a positive answey.

Example. We can see how the Antarctic meteorite robot could make decisions
inthisway. If itisconsidering aparticular visible object 01, it should go pick up o1
and investigate it further if o1 turns out to be interesting; otherwise it should move
on to consider the next visible object. We can cast this as arule associating queries
(and answers) with choices the robot will make:

If thereisapositive answer to 2K — interesting(o1), do pick-up(ol).

If there is a negative answer to 2K — interesting(ol), do try-next().
|

Answers are useful for more than just making your next decision, however. In
planning, a proof can provide a useful data structure for keeping track of a series
of actionsto perform and the expected results of those actions. In communication,
a proof can keep track of a collection of facts and the relations between them; it
suggests how the facts can be organized into a comprehensible explanation.

Example. Suppose we have represented the road network of Figure 1 using a
predicate meetsto namearel ation that holdsbetween |, Rand D whenfollowing road
segment Ralong direction D leads into intersection I. If we assume that awalker is

10

freeto walk along theside of any road segment in either direction, then we can define
clauses that describe when someone can walk from a start road segment Sto afinish
road segment F: cw(S F):

cw(F, F)
oW(S F) — meets(l, S D1) A meets(l, M, D2) A cw(M, F)

Hereis an informal explanation of these clauses. You can get from where you are
to anywhere else on that segment immediately. You can get from where you are to
anywhere else by going to the nearest intersection, walking on to another road that
enters the intersection, and continuing your walk.

Say the knowledge base K includes the clauses defining Figure 1, together with
the clauses for cw given above. We can ask whether you can go from Johnson Park
in Piscataway to Buccleuch Park in New Brunswick by posing the query

K — cw(rrw, gw)

(This assumes you exit Johnson Park on the west segment of River Road and enter
Buccleuch Park on the west segment of George Street.)

Each answer to this query encodes away to get from Johnson Park to Buccleuch
Park. Infact, thisisthe easiest way to see how each answer is constructed. To write
answersdown compactly, let’s use the notation step(s, m) — by(i, d1,d2, f) to abbre-
viate three leaf proofs. The first proof establishes an instance of the second clause
for cw, using a substitution o defined by

o={S/s,F/f,1/i,D1/d1,M/m,D2/d2}
This proof is
K — cw(s, f) <« meets(i,s,d1) A meets(i,m, d2) Acw(m,)

(To see that thisis aleaf, say K = K’, c where c is the second clause for cw: then
this proof isK’,c — co.) The second and third proofs are also leaves that access
appropriate facts about the interconnections among road segmentsin Figure 1.

K — meets(i, s, d1)
K — meets(i,m, d2)

Hereis an answer to the query encoded using this notation.

step(l1b, gw) —
step(rrw, [Ib)— by(i6, south, west,gw) K — cw(gw, gw)
by(i4, east, north, gw) K — cw(llb, gw)
K — cw(rrw, gw)

11

The notation brings out the way that this answer says to go from River Road to
George Street. In the first step subproofs, you follow River Road to the Land-
ing Lane Bridge; as the corresponding by term indicates, that means going east on
River Road and reachingi4. In the second step subproofs, you follow Landing Lane
Bridge to George Street; as the by term indicates here, that means going south on
Landing Lane Bridge and reaching i6. With that, the proof finishes at the observa-
tion that you're at your destination.

This example answer, and the informal discussion of it, should suggest how
proofs provide data structures that an agent can build to create a plan; an agent can
draw on to follow a plan; or to communicate a plan to a person or another artificial
agent. A data structure like the answer above contains a lot of technical structure,
but in anutshell it makes a specific argument about why the query istrue. That ar-
gument can be understood and used, just like the information that the query is true
can be understood and used.

6 Building proofs

So far, we have studied aparticularly simple representation of proofs. Each stepina
proof applies a specific clause from the knowledge base to a specific case; the case
is decided in advance by using a specific substitution to obtain the ground clause
that the proof uses from the more general clause that's available explicitly in the
knowledge base.

This representation provides the best way to think about why proofswork. It al-
lows soundness and compl eteness to be proved particularly smply. Thisrepresenta-
tion a so providesthe best way to think about how to use proofs. Thisrepresentation
writes out explicitly the facts used in the proof—the facts that you need to check to
follow aplan, or the facts that you need to communicate to explain an argument.

Unfortunately, this representation does not provide the best way to think about
building proofs. Intuitively, this is because you don’t really know the specific case
that you want to apply a clause at when you select a clause; you only have a“rough
idea”. Such a*“rough idea’ of how to apply a clause can actually be represented
explicitly. This allows us to be precise about the algorithms that are best used to
build proofs.

6.1 Constraints and Unification

To do so, we introduce alifted representation for proofs. By contrast with the lifted
representation, the representation introduced in Section 3 is called a ground repre-
sentation for proofs.

The lifted representation is based on equation constraints and substitutions. A
congtraint isthe general term in Artificial Intelligence for arepresentation that you
use to record partial information about values for variables. An equation is an ex-
pression of the form e = f that says two expressions must be equal. An equation
isakind of constraint. Some equations tell you exactly what the value of a vari-

12

able should be, like X = a, but other equations, like X =Y, give partial information.
X =Y doesn't tell you what values X and Y have; it tells you that whatever those
values are, they have to be the same.

A substitution satisfies an equation e = f exactly when ec isidentical to fo. A
substitution satisfies a set of equations E exactly when it satisfies every equationin
the set. A substitution o that satisfies an equation or set of equationsE isalso called
aunifier for E.

We can use equations to build data structures called proof skeletons that do not
commit to use particular ground instances of clauses. These proof skeletons leave
open the choice of instantiations in proofs, but otherwise record how the proof is
constructed and what constraints instances of clauses in the proof should satisfy.
A proof skeleton, together with a substitution that satisfies its equations, will give
enough information to construct a ground proof, and vice versa.

Formally, a proof skeleton takes the form (P;E). P is atree of judgments of
theform K — f where K is aknowledge base and f is a clause; obvioudy these
judgments areinspired by the judgments that proofs are made out of, except these f
contain variables in addition to the constants required in ground proofs. E isalist
of equations which must be solved to obtain a proof from the skeleton.

Again, we spell out the cases for proof skeletonsin terms of leaves and internal
nodes. Leaves ook like this:

(K,e— f;e0=f)

Normally at leaves, weinstantiate a clause e from the knowledge base to a particular
ground case using asubstitution o. 1n skeletons, wedo thisinstantiation in two steps
(or moret).

First, we don’t want to choose a particular value for eo at this stage; we Ssimply
leave open the possibility that e can be instantiated in arange of ways. So we apply
a substitution 0 to e, which may not be ground, to leave open the choice of terms
that will appear in eo. (Infact, typicaly we will assume that 8 is a substitution that
simply renames or tranglates the variables that occur in e to new variables that do
not occur anywhere lower down in the proof skeleton we are building.)

Second, we want to anticipate how this leaf may fit into the broader proof we
are building. To do that, we frame the rule in terms of a clause f that we assume
the leaf provides an instance of. Often, f will be a query and we will want the |eaf
to provide an anser for f. To ensure that the leaf is a proof of an instance of f, we
add the equation f = e8. When we eventually obtain our proof from our skeleton,
we will apply some substitution p to thisleaf. The equation we add here will ensure
that thisleaf accesses an instance of the knowledge base—eo or eBp—that provides
an instance fp of the query we need the leaf to address.

Internal nodes arerelatively easy by comparison. Suppose you have m+ 1 proof

13

skeletons that match together as follows:

PO I:)1 Pm
<K_"h<—b1/\.../\bm;E0> <K_"b]_;E1> <K_"bm;Em>

Then you can combinethem together into alarger proof skeleton. You build the new
tree by using an analogue of the rulefor constructing alarger ground proof treefrom
smaller proof trees; you build the new list of equations by appending together al the
lists of equations from the smaller proof skeletons. Explicitly, what you get isthis:

P, P, P
(K—h \Eo, Ey, ... Em)

A lifted proof is defined as a proof skeleton (P, E) together with a substitution o
that satisfies E and associates each variable with a ground term. We will shortly
define algorithms to trand ate between ground and lifted proofs; this will show that
thelifted proof system is sound and compl ete the same way the ground proof system
is.

Example. But first, we illustrate proof skeletons and lifted proofs by returning
to the map example of Section 5.

Start by considering what a proof skeleton looks like for the query:

K — cw(gw, gw)

By accessing the clause cw(F, F) and applying a substitution 6 that renames F to a
new variable F1 to it, we get the following proof skeleton:

(K — cw(gw, gw); cw(F1,F1) = cw(gw, gw))

Of course, the substitution 0 = {F1/gw} showsthat thisis not just aproof skeleton
but a lifted proof.

More interesting things happen with alonger proof skeleton. Information about
the values of variables accumulates gradually during the construction of the proof.
Let’s get a sense of this by considering the query 2K — cw(I1b, gw).

Suppose we decide that the proof will begin by reasoning from the recursive
clause for cw; suppose we use 6 as the placeholder substitution in applying this
clause:

8o = {S/So,F/Fo,1/10,D1/D1y,M/Mg, D2/D2o}

Write h — b to abbreviate the result of applying 6y to thisclause, whichis:
cW(Sp, Fo) «— meets(lo, S, D1o) A meets(lo, Mo, D2) A cw(Mo, Fo)

Meanwhile, from the query, we know that to apply this clause it will aso have to
take thisform:
cw(llb, gw) < b

14

We can put this all together into a proof skeleton:
(K — ow(llb,gw) — b; (h— b) = (cw(llb,gw) — b))

The equations here are just an elaborate way of requiring that § = Ilb and Fy = gw.

Thus, when we decide that our proof will begin by reasoning from the recur-
sivecw clause, we arereally fixing threethings. First, the overall proof skeleton for
cw(l1b, gw) will begin with an internal node, showing that the query will be derived
indirectly by some number of steps. Second, the leftmost subtree will be derived
from the proof skeleton above; that settles the other querieswe must answer to com-
plete the proof. Finally, we adopt the equation constraint that & = llb and Fy = gw
as we continue to build the proof.

What is important about this representation is not what we have decided, but
what we haven't. So far, the equations place no constraints on any of the variables
that appear only in the body of the cw clause. So as far as we know, I could be
anything, and D1, could be anything, for example.

That’s important when we go to construct the next subproof, where we pose the
query K — meets(lp, S, D1p). We can usethe fact that S = IIb to access clauses
from the knowledge base that describe where segment I1b goes. But then the clause
we choose will tell usthe valuesfor Iy and D1.

In particular, suppose that at this stage we access the clause:

meets(i6, 11b, south)
Then we build the proof skeleton
(K — meets(lp, S, D1g); meets(i6, lIb, south) = meets(lg, S, D1p))

Sowe learn that Ig =16 and D1y = south.

Similarly, at the next stage we pose the query 2K — meets(lg, Mg, D2p), S0
we are looking for another meets clause that describes intersection 6. We build the
proof skeleton

<K - rneetS(lo, M07 D20)a meetS(IG, aw, Weﬁ) = rneetS(lo, M07 D20)>

and learn that My = gw and D25 = west. We complete the proof with the query
2K — cw(Mp, Fp). But we aready know that Mg = gw and Fy = gw. Only know
doweknow the particul ar instantation of therecursive cw clause that we have settled
on to build the proof.

To finish up, we rebuild thefirst proof skeleton given above, and splice the trees
and equations together into an overall proof skeleton. ®

To concludethis section, we show that every lifted proof correspondsto aground
proof, and vice versa. These arguments give another straightforward illustration of
reasoning by induction on the structure of proofs.

15

Soundness. Suppose we are given a lifted proof consisting of a proof skeleton
(P,E) and asubstitution o that satisfies E. We can convert it into aground proof P'.
Together with the soundness theorem for the ground proof system that we proved in
Section 4, this shows that the lifted proof system is also sound.

First we consider the case where the tree P is aleaf. Then the proof skeleton
actually takes the specific form:

(K,e— f;e0=f)
We know because we have alifted proof that (e0)o isidentical to fo. | claim that
K,e— fo

isaground proof. We have to show that fo is an instance of e. To establish this,
we will defineanew o’ intermsof o and 6 such that ed’ is fo. Recall 6 and o are
represented as sets of bindings Vi /t;. So we have:

o' ={Vi/(to): Vi/ti € 8} U{Vi/ti : Vi /t; € 0 and thereisno Vi /t; € 6}

For any e, 8 and g, and any o’ defined from them this way, (e8)c and ed’ are
identical. One way to prove thisis by induction on the structure of expressions. We
start with terms. If e isaconstant c, then (e8)o and ed’ agree: they are both c. If
eisavariableV; that has abinding Vj/tj in 6, then e ist; and (e8)o istjo. This
isaso ed’. Otherwise, e must be a variable V;j that has no binding in 8. So eB isV;
and (e9)o isVjo. If thereisabinding V;/t;j in o, then, (e8)o ist;; but ed’ isaso
tj, because with no binding for V; in 8 we have defined o’ to include V; /t; too. If
thereis no binding for V;j in o either, then both (e8)o and eo’ are simply V;. Now
that we have established what we need for terms, we can continue the induction.
Assuming the claimistruefor smaller expressions, it extendsto larger expressions.
We simply apply the alternative substitutions to obtain identical subexpressionsand
then recombine the subexpressions into identical overall expressions.

So far, then, we have shown that in the case that P is aleaf the following propo-
stionistrue: if thereisalifted proof

P
(K—f JE),0
then thereis aground proof of the form
=4
K— fo

Suppose this proposition istrue of al proofs of height smaller than h, and consider
alifted proof of height h; it takes the form

P, P, P
(K— f ,E),0

16

We know by the construction of thetreein the skeleton herethat there must be skele-
tons

<P07 EO> e <Pm, Em>

Each B, has smaller height than h; each E; consists of equations that are recorded in
E, so o satisfies each E;. Thereforewe have lifted smaller proofsthat we can apply
our hypothesis to. With the proofs P}, Py, ..., P}, that we obtain, we can construct
the overall ground proof P’ that we need like this:

Fo P P
K— fo+~bo..bhno K—>bo ... K—byo
K— fo

By the induction principle, then, the proposition is true for al lifted proofs. This
completes the argument that lifted proofs are sound. ®

Completeness. Supposewearegiven aground proof P'. Wecan convertitintoa
lifted proof P. Together with the completenesstheorem for the ground proof system
that we proved in Section 4, this showsthat thelifted proof system isalso complete.

Again, we start by considering the case where the ground proof P isaleaf, so it
has the specific form:

K,e—eo

We introduce a substitution 6 with a binding that associates each variable V; that
occursin e with atotally new variable N;. Then we create another substitution og
defined by

oo = {N;/t; : Vi/ti € c and V; occursin e}

Now we exhibit a corresponding lifted proof:
(K,e — e0;e0 = eo), 0g
In general now, we assume that from a ground proof

P

K— f
we can construct some lifted proof

P
(K—f ;E),0

where, of course, o satisfiesE, but wherealso o isdefined exclusively for new vari-

ablesthat we have introduced only in constructing the lifted proof. (That meansthe
variablesthat appear inthe equations E arejust these new ones.) Supposethisistrue

17

of ground proofs of height smaller than h, and consider a ground proof P of height
h; it takes the form:

P, P, P
K—f

Again, each B isasmaller proof, so we can apply theinduction hypothesisto obtain
lifted proofs of the form
R
(K— fi ;Ei),0i

Now suppose we consider the set of bindings o = | J; 0;. We know that o so defined
isin fact a substitution, because each o is defined only for the new variablesintro-
duced in lifting subproof B; these sets are digoint. We also know that o satisfies
each E;, because 0 and o; agree on all the variablesthat appear in E;. What’s more,
we know that o is defined exclusively for the new variables that we introduced in
constructing the overall lifted proof corresponding to P. That givesus alifted proof

P
(K—f ;Eq,Eq,...,Em),0

where o has the needed property. By the induction principle, the result holdsfor all
ground proofs. This rounds out the argument that lifted proofs are complete. ®

6.2 Building proofs bottom up

This lifted representations of proofs finally allows us to make precise a variety of
proceduresfor building proofs. We start with abottom up proof procedure. Thispro-
cedureis named because it starts with concrete facts and gradually builds up larger
proofs that establish higher-level, more abstract conclusions.

In broad outline, the bottom up procedure works by filling repository of proofs;
the repository stores a representative proof for each provable formulathat has been
found. The repository is filled using a queue that holds proofs that have been dis-
covered but whose consequences have not yet been considered. The bottom up pro-
cedure repeatedly takes a proof off the queue and lets it react with other proofsin
the repository to produce new proofs. Since more consequences may follow in turn
from the new proofs, the new proofs are added to the queue. Finally, the dequeued
proof is added to the repository.

Pages 47 and 54 of Cl describes a brute-force bottom up proof procedurefor the
language we are studying. (Brute force means that the procedure doesn’'t adopt any
representations or algorithmsthat are designed to compute the resultsin an efficient
way; it uses smple representations at the cost of possibly doing more work.) This
procedure instantiates each clausein all possible ways. Then it repeatedly looksfor

18

a ground rule whose body has a proof but whose head does not yet; when it finds
such arule, the procedure adds a proof for the head.

One can sometimes do better in implementing this strategy. First, instead of ap-
plying rules all at once, you can apply rules in stages, proving one formulain the
body at atime. To do this, you need to add elements to the queue and the reposi-
tory that store a clause together with proofsfor some of the atomsinitsbody. When
you find aproof for the next atom inits body, you can combine the two elementsto-
gether to get another stage in the application. If it'sthefinal stage, you can collapse
the result into a proof of the head of therule.

In addition to this trick for handling rules, you can aso use some specialized
procedures for handling variables. First, you can use most general unifiers to solve
the equations associated with proofs. Recall that a unifier for aset of equationsis a
subsititution that satisfies all the equations. One substitution o is at least as general
asanother o’ if thereisathird subsitution 6 such that (ec)8 isawaysthe sameased’.
It turns out that the simple equations you solve in ordinary first-order logic always
have one unifier that is at least as general as any other. We can assume we have a
function that computes such unifier for such a set of equations—mgu(E). You can
use mgu(E) to help compute mgu(E, E'). Sincethe substitution mgu(E, E’) satisfies
E, and mgu(E) is a most general unifier for E, thereis a 8 such that mgu(E)6 =
mgu(E, E).

You can also use the generality of substitutions to determine which proofs pro-
vide new results. Suppose you have proved afact f with substitution o. You may
aready have afact g with substitution o’ where thereisa6 such that (go’)6 isiden-
tical to fo. Then any formulayou could derive using f and o, you could aready
deriveusing g and @’. In this case, we say that go’ subsumes fo. We don’t need to
add the proof for f and o to the queue.

We can now describe the bottom up proof procedure more precisely. The e-
ements we consider are of two kinds. For atomic clauses, we have lifted proofs,
where the substitution we store is as genera as possible:

Atom
<F)7 E>)
mgu(E)

To comparetwo such structures using subsumption, suppose A; hasaproof that ends
K — f and aunifier o and A, hasaproof that endsK — g and aunifier o’; if fo
subsumes go’ then A; subsumes A;.

19

To store partia information about the use of arule, we keep records of theform
Rule
h<— blbm(e K),

Py R
(K— Db} ;E)...(K—Db ;E),

O':mgU(E]_,b]_:bg_,...,Ei,bi :bll)

To compare two such structures using subsumption, suppose R; involves a clause
h; + By and aunifier 0 and R, involves aclause h, < B, and aunifier o’; if (hy <
B1)o subsumes (h, «— B,)o’ then Ay subsumes Ay.

Now we give an extended explanation of how we combine two such structures.
Under appropriate conditions, reacting Atom with Rule or Rule with Atom gives a
new result N; we explain both what the conditions are and what N looks like below.
First, though, observe that reacting Atom with Atom or Rule with Rule never results
in anew result.

WEe'll assume the entry Rule takes the form above; suppose also that the entry

Atom takes the form
Atom

R
(K== bit1 ;Eita),
6 =mgu(Ei 1)
Also suppose none of the variables of Atom and Rule overlap. Asin the proof of
completeness, we can take cU 0 to give

ouUub = mgU(E]_,b]_ = bﬁ_,...,Ei,bi = bilvEH—l)
We can use this to construct
o' =mgu(Ey, by =bj,... . E b =bf,E 1, b =bi,)

if these equations have any solution.

Once we have the new unifier, there are two possible waysto store theresult. If
i +1 = m then we have completed the application of the rule; we can assemble a
proof tree P’ of

I:)1 I:)m
K—-h—bj..b, K—b ...K—b,
K—h
we can use P’ to construct N as:
Atom
(P;Eq,...Em,(h—by...bm) = (h—b,...b)),
0-/

20

The bottom-up procedure processes queue Q against reposi-
tory D toyield final result Rif

e Qisempty andD isR; or

e — Wedequeue X from Q, leaving new queue Q'.

— Let Sbe the set of elements C such that reacting
F with X for F in D givesC.

— Let S hold a fresh copy of each element C of S
such that no F in Q or D subsumesC.

— We enqueue each element of S'in Q/, giving next
queue Q”.

— We add X to D giving new repository D”.

— The bottom-up procedure processes Q” against
D” toyield final result R.

Figure 2: Bottom-up proof procedure with variables

Otherwise we still have a partia application of the rule; we construct N as.

Rule
h<— blbm(e K),

Py R R
(K—=Db} ;E1)...(K— D ;E),(K— Db, ;E1),

O./

These definitions allow us to define the bottom up proof procedure of Figure 2.

6.3 Building proofs top down
A top down procedure builds proofs nondeterministically. The procedure maintains
anincompletelifted proof of the query. At each step, the procedure extendsthe proof
by guessing away to extend it. (The book uses the el egant term choose for thiskind
of guess; see page 50.)
Incomplete proofs are also called tableaux. Incomplete proofs differ from com-
plete proofsin that some of theleavesinincompl ete proofscan be unproved queries.
You can probably imagine how such a data structure could be defined, by anal-
ogy with complete proofs. For completeness, here is such a definition. A tableau
judgment either has the usual form

K—e

21

where eisaclause or the form of a query
K—g

wheregisan atomic clause. (Because we can assumethat rulesare accessed directly
from the knowledge base, that the only unproved clausesin atableau are atomic.)

A tableau skeleton consists of apair (P; E). Pisatree of tableau judgments, and
E isalist of equations. Leaves either take the form of proof skeletons:

(K,e— f;e0=f)
Or they take the form of queries:
(K—g0)

Internal nodes in tableau skeletons are defined by the same rule as internal nodes
in proof skeletons. You have some tableau skeletons of thisform—where all of the
skeletons for the bodies may involve queries or usual judgments:

P Py Pm
(K—h«—DbiA...Abm;Ey) ((PK—Db1 ;E1) ... { (9K — bm ;Em)

Then you can combinethem together into alarger tableau skeleton. Again, you build
the new tree by using an analogue of the rulefor constructing alarger ground proof
tree from smaller proof trees; you build the new list of equations by appending to-
gether al the lists of equations from the smaller proof skeletons. Explicitly, what
you get isthis:

P, P, P
(K—h \Eo,Eq,....Em)

A lifted tableau is defined as a proof skeleton (P, E) together with a substitution o
that satisfies E and associates each variable with a ground term.

A tableau skeleton without any queriesin its tree of judgmentsis a proof skele-
ton. And alifted tableau without any queriesin its associated tree of judgmentsisa
lifted proof.

Subject to the equation constraints, you can obtain one tableau from another by
extending it. Suppose you have atableau skeleton T of

(PIE)
where P containsaleaf 2K — g. And suppose you have another tableau skeleton
T of
(PK—=g E)

22

Modify P by replacing the leaf 7K — gin P by the new subtree P’. Call the result
P”. Then you extend T by T’ by creating the following tableau skeleton:

(P;E,E)

If you have asubstitution o that satisfies E, you may be ableto start from o’ to obtain
asubstitution that satisfies E and E’. Then the extended skeleton will in fact be an
extended tableau.
The top down procedure uses two kinds of extensions in particular. First, you
can extend at a leaf
K—f

by using atableau skeleton that matches f against afact in the knowledge base:
(K,e— f;e0=f)

Alternatively, you can extend that sameleaf by using atableau that matches f against
the head of arulein the knowledge base and sets up goal's corresponding to each of
the atomic clauses in the body of the rule. Such atableau looks like

(K—f ;

The top down proof procedureworks simply by starting from a tableau skeleton
and an associated unifier for its equations:

(K—0g,0),0

Then it iterates nondeterministically. When it has a complete proof with no query
nodes, it returnstheresult. Otherwise, it chooses away to extend the tableau skele-
ton using one of these two patterns, and computesacorresponding new mgu. If none
exigts, it abandonsthe attempt as afailure.

To compare the definitionsin the text on pages 57 and following, think of agen-
eralized answer clause

yes(ty,...,th) «—ag A...am

as an abbreviation of a tableau skeleton together with a substitution satisfying its
equations:
(P;E),o

For each g thereisacorresponding query leaf 2K — g; in P such that gjo = g (and
vice versa). You can check that the steps outlined in Figure 2.6 of the text describe
operationsthat correspond exactly to what is needed extend atableau and obtain the
new abbreviation for it. The abbreviation can be niceif you want to think about just

23

what the top down procedure hasleft to do to proveagoal. However, it isalso useful
to think about the proof that the procedure is actually building. Then you have to
continue to remember the work that you have done even after you finish proving a

subgoal, rather than erasing it the way subgoals are erased in resolving generalized
answer clauses.

24

