
Notes on Proof and Proof Search
DCS 440, AI – Fall 1999

Matthew Stone

We are investigating logic so as to better understand the overall conceptual back-
ground underlying the majority of AI research. In this picture, we want to design
and build a computational artifact—a program—to carry out some task in the real
world; we view the program as an agent acting in its environment. Logical results
tell us how the agent can have a representation, viewed a sentence in a formal lan-
guage, which makes a claim about a real-world relationship—this is the province
of semantics—and tell us how the agent can use that representation to make correct
decisions about the world—this is the province of proof theory.

These notes come in two parts. The first part, represented by sections 1 through
5, provides documentation for the results presented in class about semantics, the
structure of proofs and the use of proofs to represent arguments, for example in our
New Brunswick route planning problem.

The second part, which consists just of section 6, considers the algorithms and
data structures you need to build proofs effectively. This section provides a logical
perspective on the operations Prolog does when proving a query, and it also care-
fully introduces an alternative strategy for executing knowledge bases bottom up.
Like the first part, the second part provides mathematical detail about material that
is important to AI and is only covered very informally in the text. The second part
also includes some formal details that I can present only in broad strokes in class,
but that allow you to be very precise about why the logical results about proofs that
we studied apply very directly to the AI systems that have been written to carry out
representation and reasoning problems for agents. In particular, even though Prolog
does some very funny computations involving rule selection, unification and back-
tracking search, this is exactly what is required to use Prolog clauses to derive correct
consequences of a description.

1 Background
The representations we’re investigating are a simple form of knowledge base (KB);
which are constructed in terms of terms and predicates.

Terms take two forms. There are constants, conventionally written with symbols
beginning with lower case letters, which the designer of a KB intends to correspond
to specific real-world objects. Then there are variables, conventionally written with
symbols beginning with upper case letters (or underscores), which the designer of a
KB intends to range over the real-world objects that are relevant to the task at hand.

Predicates, like constants conventionally written with symbols beginning with
lower case letters, are names the designer gives to real-world relationships. Predi-
cates have arities (a mathematician’s pun generalizing unary, binary, ternary, etc.)

that says how many objects stand in the corresponding relationship in the world.
Together the set of constants and predicates that are relevant to the designer’s

task determine the language of the knowledge base for that task.
The claims that can figure in a knowledge base are called definite clauses. Terms

and predicates can be assembled into two kinds of clause. An atomic clause is an
expression of the form

p(t1, . . ., tm)

where p is an m-ary predicate and each ti is a term. It is understood as making the
claim about the world that the objects designated by those terms stand in the rela-
tionship represented by the predicate.

A rule is an expression of the form

h← b1∧ . . .bm

where h is an atomic clause (called the head of the rule) and each bi is another atomic
clause. (The conjunction b1∧ . . .bm is called the body of the rule.) A rule is under-
stood as making the claim about the world that in any cases where each clause in the
body of the rule makes a true claim about the world, the head of the rule also makes
a true claim about the world.

Clauses are called ground when they contain no variables.
A knowledge base is simply a set of definite clauses. Informally, it collectively

claims that the world matches each of the clauses in it.
Compare page 30, CI

2 Semantics
An interpretation formalizes the process of making claims about the world that we
saw in the informal motivation of knowledge bases. An interpretation is a triple
〈D,φ,π〉 where:

• D is a set of objects, called the universe or domain of the interpretation. (Do-
main is overloaded; I prefer to use it in its informal sense, meaning a coherent
set of real-world tasks that can be solved using a coherent body of knowledge.)

• φ is a map associating each constant c in the language with an element φ(c) of
D.

• π is a map associating each n-ary predicate p in the language with a function
from Dn←>,⊥.

To describe general claims, we also introduce assignments to temporarily link
each variable to an object; formally an assignment is a map ρ associating an element
ρ(X) of D with each variable X. Now we can introduce the idea of the denotation of

2

a term t on an assignment ρ—written δ(t,ρ), which formalizes the real-world object
that a term picks out in a particular case (as required in a rule, say).

δ(t,ρ) =
{

φ(t) if t is a constant
ρ(t) if t is a variable

Given an interpretation, we can combine the denotation of terms with the func-
tional relationship associated with predicates to say when a clause is true at an as-
signment (in that interpretation).

• p(t1, . . ., tm) is true at ρ just in case

π(p)〈δ(t1,ρ), . . .,δ(tm,ρ)〉=>

• h← b1 ∧ . . .bm is true at ρ just in case either h is true at ρ or some bi is not
true at ρ.

A clause is true (in an interpretation) if and only if it’s true at every assignment (in
that interpretation). A knowledge base is true (in an interpretation) if and only if
every clause in it is true (in that interpretation).

A knowledge base K entails f (written K |= f) if and only if f is trun in every
interpretation in which K is true. We will focus on the case where f is a ground
clause.

Compare page 34–36, CI

3 Proof
A proof is a data structure that describes why a knowledge base entails some fact
in a concrete form that a computer program can construct or check.

We’ll think of a proof is a tree of judgments. A judgment takes the form

K - f

(read f follows from K.) K is a knowledge base and f is a ground clause.
There are two basic computational operations—algorithms—that go into con-

structing proofs. The first operation is applying a substitution. Informally, this algo-
rithm is a computational simulation of the way assignments allow variables to range
over all elements of the universe of an interpretation.

A substitution σ is a finite set of the form

{V1/t1, . . .,Vn/tn}

Here Vi is a variable and ti is a term; Vi/ti is called a binding. (For some technical
conditions on substitutions, see page 52, CI; an important one here is that no variable
occurs in two bindings V/t1 and V/t2.) The application of σ to an expression e (like

3

a term or a clause or even a proof, as we’ll see) consists of e with each occurrence of
a variable Vi replaced by an occurrence of the corresponding ti. It is written eσ; the
expression eσ is called an instance of e; the process of going from e to σ is called
instantiation.

This first operation allows us to say what the simplest proofs are, the leaves.
Leaves take the form

K,e - eσ

In other words, at leaves, you argue that a ground clause eσ follows from the because
the ground clause explicitly names one of the cases where a more general clause e
applies.

The second operation is matching identical formulas, which provides an algo-
rithm for combining smaller proofs together to make larger proofs. To match proofs,
you only have to look at the judgment at the root of the proof: the knowledge base
and the ground clause that follows from it. So when you describe matching proofs,
you write a proof this way

P
K - f

P names the whole proof; K - f names the judgment at the root of the proof.
Suppose you have m + 1 proofs that match together as follows:

P0
K - h← b1∧ . . .∧bm

P1
K - b1

. . .
Pm

K - bm

Then you can combine these proofs together into a single larger proof written like
this:

P0
K - h← b1∧ . . .∧bm

P1
K - b1

. . .
Pm

K - bm

K - h

When we have a proof
P

K - f

we say f is provable from K, or K ` f .

4 Proof, semantics and computation
Proofs are defined completely syntactically, without any reference to how the sym-
bols are interpreted. This is essential to the role that proofs play in the AI picture of
an agent in its environment. The agent only has access to its representations; and all
it can do with them is carry out syntactic manipulations on them. So this is what it
has to use in making its decisions.

So the picture we have needs to be completed by relating the proofs that an agent
can construct with the information that we understand the agent to have, given the

4

meaning of its knowledge base. This relationship takes the form of two mathemat-
ical results, soundness and completeness.

4.1 Soundness
Soundness states that if K ` f then K |= f . We prove this in two steps correspond-
ing to the two kinds of operations that go into constructing proofs: applying sub-
stitutions and combining proofs together. Each steps some insights into why it is
possible for a syntactic algorithm to correctly simulate the semantic process of in-
terpretation.

Step 1. In step 1, we prove that, in any interpretation I, if a clause e is true then
any ground clause eσ is true. To show that eσ is true, we must show that eσ is true at
any assignment ρ. To do that, we will consider an arbitrary such ρ; we will construct
a new assignment, ρσ and apply the assumption that e is true at ρσ. We choose ρσ in
such a way that the semantic assignment corresponds to the syntactic substitution;
this makes the truth e true at ρσ the same thing as the truth of eσ at ρ.

Here’s how it works. Write σ out in full as

{V1/t1, . . .,Vn/tn}

Now, we can explicitly consider the effect of σ on the interpretation of terms. Sup-
pose we want to find the denotation at ρ of a term t that occurs in e, which we have
rewritten using σ to an occurence of tσ in eσ. Recall that this is given by δ(tσ,ρ):

δ(tσ,ρ) =
{

φ(tσ) if tσ is a constant
ρ(tσ) if tσ is a variable

Now, let’s flesh out this out using what we know about the substitution. If t is a
constant, tσ is just t. Substitutions only affect variables. If t is a variableVi on which
σ is defined, then tσ is the corresponding ti. As it happens, the t we are considering
fall into one of these cases; but otherwise, we would have t unaffected by σ too; it
doesn’t hurt to write this case down too.

δ(tσ,ρ) =

 φ(t) if t is a constant
φ(ti) if Vi/ti is in σ
ρ(t) if t is a variable with no binding in σ

Now, we can set up ρσ so that δ(t,ρσ) = δ(tσ,ρ)—and echo the substitution seman-
tically. Explicitly, ρσ is:

ρσ(V) =
{

φ(ti) if V/ti is in σ
ρ(V) if V is a variable with no binding in σ

In each of the cases for t—constant, variable with a binding in σ, variable with no
binding in σ—we see that δ(t,ρσ) by this definition does coincide with δ(tσ,ρ).

5

We now use ρσ. Suppose e is an atomic clause:

p(t1, . . ., tm)

Then eσ is
p(t1σ, . . ., tmσ)

eσ is true at ρ just in case

π(p)〈δ(t1σ,ρ), . . .,δ(tmσ,ρ)〉=>
= π(p)〈δ(t1,ρσ), . . .,δ(tm,ρσ)〉=>

that is, just in case, e is true at ρσ.
Suppose e is a rule

h← b1∧ . . .bm

Then eσ is
hσ← b1σ∧ . . .bmσ

eσ is true at ρ just in case

hσ is true at ρ or some biσ is false at ρ.

By the argument we just gave for atomic formulas, this is equivalent to

h is true at ρσ or some bi is false at ρσ.

And this is equivalent to the condition that e is true at ρσ.
This argument contains the nugget of an induction on the structure of formulas;

this kind of arguments argues that any representation has a property by showing first
that the simplest representations have this property and then that any way of build-
ing a larger representation representation out of smaller ones preserves this property.
The complexity of a clause is limited: you have either atoms or rules. Given a rep-
resentational system that had more ways to make claims about the world this kind
of argument would be even more important. For example, we can use the same kind
of induction to describe proofs which can already grow substantially, even in the
simple language we have. This is step 2 of the soundness argument.

Step 2. We prove that if K ` f then K |= f . First, we consider leaf proofs

K,e - eσ

Suppose K,e is true in some interpretation. Then in particular e is true in that inter-
pretation. By what we proved in step 1, then, eσ is also true in that interpretation.
Since this is true of any interpretation, we have in other words

K,e |= eσ

6

Now, we consider a proof formed recursively:

P0
K - h← b1∧ . . .∧bm

P1
K - b1

. . .
Pm

K - bm

K - h

We suppose that whenever there is a proof smaller than this one whose root judgment
is K - f , then K |= f . We use this to show that K - h here.

Explicitly, we consider each of the judgments

K - h← b1∧ . . .∧bm

K - b1
...

K - bm

Each is the root of a smaller proof. Therefore if we consider any interpretation where
K is true, h← b1∧ . . .∧bm, b1, ...bn are all true. Consider an assignment ρ; applying
the clause for interpreting a rule, we see that either h is true at ρ or some bi is false
at ρ. But no bi can be false at ρ; this means that h must be true at ρ. Since ρ was
arbitrary, h is true in that interpretation: K |= h.

We now conclude that whenever we construct a proof with root judgment K -

f , then K |= f : it’s true of simple proofs and it’s true of any proof we build of simpler
proofs that have this property. So K ` f implies K |= f .

4.2 Completeness
In general, completeness states that when K |= f , K ` f . It says that any true state-
ment can be derived. Another way to understand it is by taking the contrapositive:
K 6` f implies K 6|= f . If there is no proof of a fact from a knowledge base, then there
is some model of the knowledge base where the fact does not hold. Computation-
ally, that means that in a systematic attempt to build a proof for some conjecture that
fails, there is all the information you need to construct a model where the conjecture
is false.

We will prove case of completeness where there is a particularly clear relation-
ship between an algorithmic attempt to build a proof and a special kind of model.
This is the case where f is a ground atomic clause and the model you look at is the
canonical or minimal model where as few ground atomic clauses are true as possible.

Step 1. We construct a minimal model for a knowledge base K. The model con-
sists of a universe, an interpretation for the constants, and an interpretation for the
predicates in the knowledge base. Now, the model will give “a robot’s solipsistic
view of the world”, so it will just have placeholders for all of the objects named in
the knowledge base. The robot, in its syntactic confines, needs placeholders because
it does not (and cannot) have any idea what its designer intended its constants to des-

7

ignate. To start, the constants themselves make good placeholders, so we set

DM = {c : c is a constant in the knowledge base }
or {0} if no constants appear in the knowledge base

Now the interpretation of a constant is just the placeholder we’re using for the con-
stant’s value, which boils down to this simple defintion of φM:

φM(c) = c

Now what about the predicates? The robot knows, by building proofs, that it should
include a placeholder for some real-world relationships, but it doesn’t know about
anything else. So, in the minimal model, we set πM(p) to be the function fp defined
by:

fp〈t1, . . ., tn〉=
{
> if K ` p(t1, . . ., tn)
⊥ otherwise

So our minimal model IM = 〈DM,φM,πM〉.
I have been talking like the minimal model of the knowledge base provides an

interpretation where the knowledge base is true. That is correct, but we have to prove
it. To show every f in K is true in IM, we derive a contradiction from the assumption
that some f in K is false in IM. This contradiction relies on using the simulation
between assignments and substitutions we saw above, only in the reverse direction.

The contradiction also relies on the proposition that if there is a proof P con-
sisting of the leaf K,e - eσ then eσ is true in IM. This is not just a special case
of soundness because we don’t yet know that IM is a model of K. So we prove
this proposition directly; it is not hard. First, suppose eσ is a ground atomic clause
p(t1, . . ., tn); then pσ is true in IM just in case there is a proof of p(t1, . . ., tn); of course
P is that proof.

Otherwise, suppose eσ is a ground rule hσ ← b1σ∧ . . .∧ bmσ. Consider an
assignment ρ; there are two cases. Suppose some biσ is false at ρ; then hσ ←
b1σ∧. . .∧bmσ is true at ρ. Otherwise, suppose each biσ is true at ρ; since each biσ is
a true ground atomic clause at ρ, there must be a proof of K - biσ in each case. We
can combine these proofs with the proof P to obtain a proof whose root is the judg-
ment K,e - hσ. So hσ must be true at ρ, and thus the rule hσ← b1σ∧ . . .∧bmσ
is also true at ρ.

Now we can return to the main line of the argument. Call the putative false clause
in our knowledge base e; there must be some assignment ρ such that e is false at ρ.
This assignment takes each variableVi that occurs in e to some element in D, ρ(Vi)—
in other words, to some term ti. Since only finitely many variables occur in e, we can
define a substitution σ by

{Vi/ti : Vi occurs in e and ρ(Vi) = ti}

Now, using the notation of soundness, step 1, ρ = ρσ and e is true at ρσ just in case
eσ is true at ρ. But eσ is a ground formula. So there is a proof K,e - eσ. And so,

8

by the proposition, eσ is true in the interpretation. This is a contradiction, so there
can be no false clause in our knowledge base; IM is a model of K.

Step 2. We can now argue immediately that, given a ground atomic clause f ,
when K |= f , K ` f . For consider IM. If K |= f then f is true in IM (at any assignment
ρ). But by the construction of truth in IM, that means that there is a proof of f !

While we have proved a special case of completeness, completeness is true in
general for the kind of language we have here; however, it has to be proved in a
different way. To start, you need an additional rule for building proofs:

P
K,b1, . . .,bm

- h
K - h← b1∧ . . .∧bm

What’s more, you cannot construct a single countermodel to any conjecture; you
need to construct a distinct model for each formula f for which there is no proof.
We’ll leave such arguments for a hard-core logic course.

5 Using proofs
We can now connect the logical work we did in Sections 1 through 4 with the picture
of an agent acting in its environment that we want to understand more precisely. The
agent’s representation of the world is its knowledge base. With the semantics for
terms, clauses and knowledge bases that we considered in Section 2, we can say
what claim that knowledge base makes about the world. Put another way, we can
characterize what the world must be like if that knowledge base is true.

The agent can use its knowledge base by constructing proofs. Suppose the agent
needs to know whether a specific fact f is true; if the agent can construct a proof of f
from its knowledge base, it can con conclude that if the world is the way the knowl-
edge base says it is, then f must actually be true in the world. On the other hand, if
the agent tries all possible ways to construct a proof of f and is unable to do it, then
it can conclude that the knowledge base could be true and still f could be false. This
is the content of the results about models and proofs presented in Section 4.

This view of the use of proofs gives rise to the idea of queries and answers. We
will define a query as an expression of the form:

?K - f

In this expression, f is an atomic clause, possibly containing variables; the ? notation
indicates that this query represents a request to prove instances of f from K. We can
also use the notation ? f for queries when the knowledge base K is understood in
context (that’s what the book does).

An answer gives a possible response to a query; an answer is either positive or
negative. A positive answer consists a substitution σ together with a proof of K -

f σ. A negative answer is just the symbol no; it indicates that the knowledge base is
compatible with all instances of f being false.

9

George West

Metlars South

Sutphen EastSutphen West

River Roud Out River Road East
River Road West

Landing Lane Bridge

Landing Lane

Frelinghuysen
Metlars

Bridge

18 South

George South
College Ave

Huntington West

Huntington

f
m

ms

rrerrm
rrw

rro

llb

ll

gw

b

s18

sw

se

gs
ca

hw

h

1

2

3

4
5

6

7 8

9
0

can

River Road Mid

Figure 1: A schmatic map of some of New Brunswick and Piscataway

Posing queries and deriving answers gives a way for an agent to make decisions.
Suppose an agent has a control program in which each possible action is associated
with a query that says what the world must be like for that action to be an appropriate
one. To choose its next action, the agent evaluates all of the queries, and picks one
with a positive answer.

Example. We can see how the Antarctic meteorite robot could make decisions
in this way. If it is considering a particular visible object o1, it should go pick up o1
and investigate it further if o1 turns out to be interesting; otherwise it should move
on to consider the next visible object. We can cast this as a rule associating queries
(and answers) with choices the robot will make:

If there is a positive answer to ?K - interesting(o1), do pick-up(o1).

If there is a negative answer to ?K - interesting(o1), do try-next().

Answers are useful for more than just making your next decision, however. In
planning, a proof can provide a useful data structure for keeping track of a series
of actions to perform and the expected results of those actions. In communication,
a proof can keep track of a collection of facts and the relations between them; it
suggests how the facts can be organized into a comprehensible explanation.

Example. Suppose we have represented the road network of Figure 1 using a
predicate meets to name a relation that holds between I, R and D when following road
segment R along direction D leads into intersection I. If we assume that a walker is

10

free to walk along the side of any road segment in either direction, then we can define
clauses that describe when someone can walk from a start road segment S to a finish
road segment F: cw(S,F):

cw(F,F)
cw(S,F)← meets(I,S,D1)∧meets(I,M,D2)∧cw(M,F)

Here is an informal explanation of these clauses. You can get from where you are
to anywhere else on that segment immediately. You can get from where you are to
anywhere else by going to the nearest intersection, walking on to another road that
enters the intersection, and continuing your walk.

Say the knowledge base K includes the clauses defining Figure 1, together with
the clauses for cw given above. We can ask whether you can go from Johnson Park
in Piscataway to Buccleuch Park in New Brunswick by posing the query

?K - cw(rrw,gw)

(This assumes you exit Johnson Park on the west segment of River Road and enter
Buccleuch Park on the west segment of George Street.)

Each answer to this query encodes a way to get from Johnson Park to Buccleuch
Park. In fact, this is the easiest way to see how each answer is constructed. To write
answers down compactly, let’s use the notation step(s,m)−by(i,d1,d2, f) to abbre-
viate three leaf proofs. The first proof establishes an instance of the second clause
for cw, using a substitution σ defined by

σ = {S/s,F/ f , I/i,D1/d1,M/m,D2/d2}

This proof is

K - cw(s, f)← meets(i, s,d1)∧meets(i,m,d2)∧cw(m, f)

(To see that this is a leaf, say K = K′,c where c is the second clause for cw: then
this proof is K′,c - cσ.) The second and third proofs are also leaves that access
appropriate facts about the interconnections among road segments in Figure 1.

K - meets(i, s,d1)
K - meets(i,m,d2)

Here is an answer to the query encoded using this notation.

step(rrw, llb)−
by(i4,east,north,gw)

step(llb,gw)−
by(i6, south,west,gw) K - cw(gw,gw)

K - cw(llb,gw)
K - cw(rrw,gw)

11

The notation brings out the way that this answer says to go from River Road to
George Street. In the first step subproofs, you follow River Road to the Land-
ing Lane Bridge; as the corresponding by term indicates, that means going east on
River Road and reaching i4. In the second step subproofs, you follow Landing Lane
Bridge to George Street; as the by term indicates here, that means going south on
Landing Lane Bridge and reaching i6. With that, the proof finishes at the observa-
tion that you’re at your destination.

This example answer, and the informal discussion of it, should suggest how
proofs provide data structures that an agent can build to create a plan; an agent can
draw on to follow a plan; or to communicate a plan to a person or another artificial
agent. A data structure like the answer above contains a lot of technical structure,
but in a nutshell it makes a specific argument about why the query is true. That ar-
gument can be understood and used, just like the information that the query is true
can be understood and used.

6 Building proofs
So far, we have studied a particularly simple representation of proofs. Each step in a
proof applies a specific clause from the knowledge base to a specific case; the case
is decided in advance by using a specific substitution to obtain the ground clause
that the proof uses from the more general clause that’s available explicitly in the
knowledge base.

This representation provides the best way to think about why proofs work. It al-
lows soundness and completeness to be proved particularly simply. This representa-
tion also provides the best way to think about how to use proofs. This representation
writes out explicitly the facts used in the proof—the facts that you need to check to
follow a plan, or the facts that you need to communicate to explain an argument.

Unfortunately, this representation does not provide the best way to think about
building proofs. Intuitively, this is because you don’t really know the specific case
that you want to apply a clause at when you select a clause; you only have a “rough
idea”. Such a “rough idea” of how to apply a clause can actually be represented
explicitly. This allows us to be precise about the algorithms that are best used to
build proofs.

6.1 Constraints and Unification
To do so, we introduce a lifted representation for proofs. By contrast with the lifted
representation, the representation introduced in Section 3 is called a ground repre-
sentation for proofs.

The lifted representation is based on equation constraints and substitutions. A
constraint is the general term in Artificial Intelligence for a representation that you
use to record partial information about values for variables. An equation is an ex-
pression of the form e = f that says two expressions must be equal. An equation
is a kind of constraint. Some equations tell you exactly what the value of a vari-

12

able should be, like X = a, but other equations, like X = Y , give partial information.
X = Y doesn’t tell you what values X and Y have; it tells you that whatever those
values are, they have to be the same.

A substitution satisfies an equation e = f exactly when eσ is identical to f σ. A
substitution satisfies a set of equations E exactly when it satisfies every equation in
the set. A substitution σ that satisfies an equation or set of equations E is also called
a unifier for E.

We can use equations to build data structures called proof skeletons that do not
commit to use particular ground instances of clauses. These proof skeletons leave
open the choice of instantiations in proofs, but otherwise record how the proof is
constructed and what constraints instances of clauses in the proof should satisfy.
A proof skeleton, together with a substitution that satisfies its equations, will give
enough information to construct a ground proof, and vice versa.

Formally, a proof skeleton takes the form 〈P;E〉. P is a tree of judgments of
the form K - f where K is a knowledge base and f is a clause; obviously these
judgments are inspired by the judgments that proofs are made out of, except these f
contain variables in addition to the constants required in ground proofs. E is a list
of equations which must be solved to obtain a proof from the skeleton.

Again, we spell out the cases for proof skeletons in terms of leaves and internal
nodes. Leaves look like this:

〈K,e - f ;eθ = f 〉

Normally at leaves, we instantiate a clause e from the knowledge base to a particular
ground case using a substitution σ. In skeletons, we do this instantiation in two steps
(or more!).

First, we don’t want to choose a particular value for eσ at this stage; we simply
leave open the possibility that e can be instantiated in a range of ways. So we apply
a substitution θ to e, which may not be ground, to leave open the choice of terms
that will appear in eσ. (In fact, typically we will assume that θ is a substitution that
simply renames or translates the variables that occur in e to new variables that do
not occur anywhere lower down in the proof skeleton we are building.)

Second, we want to anticipate how this leaf may fit into the broader proof we
are building. To do that, we frame the rule in terms of a clause f that we assume
the leaf provides an instance of. Often, f will be a query and we will want the leaf
to provide an anser for f . To ensure that the leaf is a proof of an instance of f , we
add the equation f = eθ. When we eventually obtain our proof from our skeleton,
we will apply some substitution ρ to this leaf. The equation we add here will ensure
that this leaf accesses an instance of the knowledge base—eσ or eθρ—that provides
an instance f ρ of the query we need the leaf to address.

Internal nodes are relatively easy by comparison. Suppose you have m+1 proof

13

skeletons that match together as follows:

〈
P0

K - h← b1∧ . . .∧bm ;E0〉 〈
P1

K - b1 ;E1〉 . . . 〈
Pm

K - bm ;Em〉

Then you can combine them together into a larger proof skeleton. You build the new
tree by using an analogue of the rule for constructing a larger ground proof tree from
smaller proof trees; you build the new list of equations by appending together all the
lists of equations from the smaller proof skeletons. Explicitly, what you get is this:

〈

P0
K - h← b1∧ . . .∧bm

P1
K - b1 . . .

Pm

K - bm

K - h ;E0,E1, . . .Em〉

A lifted proof is defined as a proof skeleton 〈P,E〉 together with a substitution σ
that satisfies E and associates each variable with a ground term. We will shortly
define algorithms to translate between ground and lifted proofs; this will show that
the lifted proof system is sound and complete the same way the ground proof system
is.

Example. But first, we illustrate proof skeletons and lifted proofs by returning
to the map example of Section 5.

Start by considering what a proof skeleton looks like for the query:

?K - cw(gw,gw)

By accessing the clause cw(F,F) and applying a substitution θ that renames F to a
new variable F1 to it, we get the following proof skeleton:

〈K - cw(gw,gw);cw(F1,F1) = cw(gw,gw)〉

Of course, the substitution σ = {F1/gw} shows that this is not just a proof skeleton
but a lifted proof.

More interesting things happen with a longer proof skeleton. Information about
the values of variables accumulates gradually during the construction of the proof.
Let’s get a sense of this by considering the query ?K - cw(llb,gw).

Suppose we decide that the proof will begin by reasoning from the recursive
clause for cw; suppose we use θ0 as the placeholder substitution in applying this
clause:

θ0 = {S/S0,F/F0, I/I0,D1/D10,M/M0,D2/D20}
Write h← b to abbreviate the result of applying θ0 to this clause, which is:

cw(S0,F0)← meets(I0,S0,D10)∧meets(I0,M0,D20)∧cw(M0,F0)

Meanwhile, from the query, we know that to apply this clause it will also have to
take this form:

cw(llb,gw)← b

14

We can put this all together into a proof skeleton:

〈K - cw(llb,gw)← b; (h← b) = (cw(llb,gw)← b)〉

The equations here are just an elaborate way of requiring that S0 = llb and F0 = gw.
Thus, when we decide that our proof will begin by reasoning from the recur-

sive cw clause, we are really fixing three things. First, the overall proof skeleton for
cw(llb,gw) will begin with an internal node, showing that the query will be derived
indirectly by some number of steps. Second, the leftmost subtree will be derived
from the proof skeleton above; that settles the other queries we must answer to com-
plete the proof. Finally, we adopt the equation constraint that S0 = llb and F0 = gw
as we continue to build the proof.

What is important about this representation is not what we have decided, but
what we haven’t. So far, the equations place no constraints on any of the variables
that appear only in the body of the cw clause. So as far as we know, I0 could be
anything, and D10 could be anything, for example.

That’s important when we go to construct the next subproof, where we pose the
query ?K - meets(I0,S0,D10). We can use the fact that S0 = llb to access clauses
from the knowledge base that describe where segment llb goes. But then the clause
we choose will tell us the values for I0 and D10.

In particular, suppose that at this stage we access the clause:

meets(i6, llb, south)

Then we build the proof skeleton

〈K - meets(I0,S0,D10);meets(i6, llb, south) = meets(I0,S0,D10)〉

So we learn that I0 = i6 and D10 = south.
Similarly, at the next stage we pose the query ?K - meets(I0,M0,D20), so

we are looking for another meets clause that describes intersection i6. We build the
proof skeleton

〈K - meets(I0,M0,D20);meets(i6,gw,west) = meets(I0,M0,D20)〉

and learn that M0 = gw and D20 = west. We complete the proof with the query
?K - cw(M0,F0). But we already know that M0 = gw and F0 = gw. Only know
do we know the particular instantation of the recursive cw clause that we have settled
on to build the proof.

To finish up, we rebuild the first proof skeleton given above, and splice the trees
and equations together into an overall proof skeleton.

To conclude this section, we show that every lifted proof corresponds to a ground
proof, and vice versa. These arguments give another straightforward illustration of
reasoning by induction on the structure of proofs.

15

Soundness. Suppose we are given a lifted proof consisting of a proof skeleton
〈P,E〉 and a substitution σ that satisfies E. We can convert it into a ground proof P′.
Together with the soundness theorem for the ground proof system that we proved in
Section 4, this shows that the lifted proof system is also sound.

First we consider the case where the tree P is a leaf. Then the proof skeleton
actually takes the specific form:

〈K,e - f ;eθ = f 〉

We know because we have a lifted proof that (eθ)σ is identical to f σ. I claim that

K,e - f σ

is a ground proof. We have to show that f σ is an instance of e. To establish this,
we will define a new σ′ in terms of σ and θ such that eσ′ is f σ. Recall θ and σ are
represented as sets of bindings Vi/ti. So we have:

σ′ = {Vi/(tiσ) : Vi/ti ∈ θ}∪{Vi/ti : Vi/ti ∈ σ and there is no Vi/t j ∈ θ}

For any e, θ and σ, and any σ′ defined from them this way, (eθ)σ and eσ′ are
identical. One way to prove this is by induction on the structure of expressions. We
start with terms. If e is a constant c, then (eθ)σ and eσ′ agree: they are both c. If
e is a variable Vj that has a binding Vj/t j in θ, then eθ is t j and (eθ)σ is t jσ. This
is also eσ′. Otherwise, e must be a variable Vj that has no binding in θ. So eθ is Vj

and (eθ)σ is Vjσ. If there is a binding Vj/t j in σ, then, (eθ)σ is t j; but eσ′ is also
t j, because with no binding for Vj in θ we have defined σ′ to include Vj/t j too. If
there is no binding for Vj in σ either, then both (eθ)σ and eσ′ are simply Vj. Now
that we have established what we need for terms, we can continue the induction.
Assuming the claim is true for smaller expressions, it extends to larger expressions.
We simply apply the alternative substitutions to obtain identical subexpressions and
then recombine the subexpressions into identical overall expressions.

So far, then, we have shown that in the case that P is a leaf the following propo-
sition is true: if there is a lifted proof

〈
P

K - f ,E〉,σ

then there is a ground proof of the form

P′

K - f σ

Suppose this proposition is true of all proofs of height smaller than h, and consider
a lifted proof of height h; it takes the form

〈

P0
K - f ← b1 . . .bm

P1
K - b1 . . .

Pm

K - bm

K - f ,E〉,σ

16

We know by the construction of the tree in the skeleton here that there must be skele-
tons

〈P0,E0〉 . . .〈Pm,Em〉
Each Pi has smaller height than h; each Ei consists of equations that are recorded in
E, so σ satisfies each Ei. Therefore we have lifted smaller proofs that we can apply
our hypothesis to. With the proofs P′0,P

′
1, . . .,P

′
m that we obtain, we can construct

the overall ground proof P′ that we need like this:

P′0
K - f σ← b1σ . . .bmσ

P′1
K - b1σ . . .

P′m
K - bmσ

K - f σ

By the induction principle, then, the proposition is true for all lifted proofs. This
completes the argument that lifted proofs are sound.

Completeness. Suppose we are given a ground proof P′. We can convert it into a
lifted proof P. Together with the completeness theorem for the ground proof system
that we proved in Section 4, this shows that the lifted proof system is also complete.

Again, we start by considering the case where the ground proof P′ is a leaf, so it
has the specific form:

K,e - eσ

We introduce a substitution θ with a binding that associates each variable Vi that
occurs in e with a totally new variable Ni. Then we create another substitution σ0
defined by

σ0 = {Ni/ti : Vi/ti ∈ σ and Vi occurs in e}
Now we exhibit a corresponding lifted proof:

〈K,e - eσ;eθ = eσ〉,σ0

In general now, we assume that from a ground proof

P
K - f

we can construct some lifted proof

〈
P

K - f ;E〉,σ

where, of course, σ satisfies E, but where also σ is defined exclusively for new vari-
ables that we have introduced only in constructing the lifted proof. (That means the
variables that appear in the equations E are just these new ones.) Suppose this is true

17

of ground proofs of height smaller than h, and consider a ground proof P of height
h; it takes the form:

P0
K - f ← b1 . . .bm

P1
K - b1 . . .

Pm

K - bm

K - f

Again, each Pi is a smaller proof, so we can apply the induction hypothesis to obtain
lifted proofs of the form

〈
Pi

K - fi ;Ei〉,σi

Now suppose we consider the set of bindings σ =
S

i σi. We know that σ so defined
is in fact a substitution, because each σi is defined only for the new variables intro-
duced in lifting subproof Pi; these sets are disjoint. We also know that σ satisfies
each Ei, because σ and σi agree on all the variables that appear in Ei. What’s more,
we know that σ is defined exclusively for the new variables that we introduced in
constructing the overall lifted proof corresponding to P. That gives us a lifted proof

〈
P

K - f ;E0,E1, . . .,Em〉,σ

where σ has the needed property. By the induction principle, the result holds for all
ground proofs. This rounds out the argument that lifted proofs are complete.

6.2 Building proofs bottom up
This lifted representations of proofs finally allows us to make precise a variety of
procedures for building proofs. We start with a bottom up proof procedure. This pro-
cedure is named because it starts with concrete facts and gradually builds up larger
proofs that establish higher-level, more abstract conclusions.

In broad outline, the bottom up procedure works by filling repository of proofs;
the repository stores a representative proof for each provable formula that has been
found. The repository is filled using a queue that holds proofs that have been dis-
covered but whose consequences have not yet been considered. The bottom up pro-
cedure repeatedly takes a proof off the queue and lets it react with other proofs in
the repository to produce new proofs. Since more consequences may follow in turn
from the new proofs, the new proofs are added to the queue. Finally, the dequeued
proof is added to the repository.

Pages 47 and 54 of CI describes a brute-force bottom up proof procedure for the
language we are studying. (Brute force means that the procedure doesn’t adopt any
representations or algorithms that are designed to compute the results in an efficient
way; it uses simple representations at the cost of possibly doing more work.) This
procedure instantiates each clause in all possible ways. Then it repeatedly looks for

18

a ground rule whose body has a proof but whose head does not yet; when it finds
such a rule, the procedure adds a proof for the head.

One can sometimes do better in implementing this strategy. First, instead of ap-
plying rules all at once, you can apply rules in stages, proving one formula in the
body at a time. To do this, you need to add elements to the queue and the reposi-
tory that store a clause together with proofs for some of the atoms in its body. When
you find a proof for the next atom in its body, you can combine the two elements to-
gether to get another stage in the application. If it’s the final stage, you can collapse
the result into a proof of the head of the rule.

In addition to this trick for handling rules, you can also use some specialized
procedures for handling variables. First, you can use most general unifiers to solve
the equations associated with proofs. Recall that a unifier for a set of equations is a
subsititution that satisfies all the equations. One substitution σ is at least as general
as another σ′ if there is a third subsitution θ such that (eσ)θ is always the same as eσ′.
It turns out that the simple equations you solve in ordinary first-order logic always
have one unifier that is at least as general as any other. We can assume we have a
function that computes such unifier for such a set of equations—mgu(E). You can
use mgu(E) to help compute mgu(E,E′). Since the substitution mgu(E,E′) satisfies
E, and mgu(E) is a most general unifier for E, there is a θ such that mgu(E)θ =
mgu(E,E′).

You can also use the generality of substitutions to determine which proofs pro-
vide new results. Suppose you have proved a fact f with substitution σ. You may
already have a fact g with substitution σ′ where there is a θ such that (gσ′)θ is iden-
tical to f σ. Then any formula you could derive using f and σ, you could already
derive using g and σ′. In this case, we say that gσ′ subsumes f σ. We don’t need to
add the proof for f and σ to the queue.

We can now describe the bottom up proof procedure more precisely. The el-
ements we consider are of two kinds. For atomic clauses, we have lifted proofs,
where the substitution we store is as general as possible:

Atom

〈P,E〉,
mgu(E)

To compare two such structures using subsumption, suppose A1 has a proof that ends
K - f and a unifier σ and A2 has a proof that ends K - g and a unifier σ′; if f σ
subsumes gσ′ then A1 subsumes A2.

19

To store partial information about the use of a rule, we keep records of the form

Rule

h← b1 . . .bm(∈ K),〈 P1
K - b′1 ;E1〉 . . .〈

Pi

K - b′i ;Ei〉 ,

σ = mgu(E1,b1 = b′1, . . .,Ei,bi = b′i)

To compare two such structures using subsumption, suppose R1 involves a clause
h1← B1 and a unifier σ and R2 involves a clause h2← B2 and a unifier σ′; if (h1←
B1)σ subsumes (h2← B2)σ′ then A1 subsumes A2.

Now we give an extended explanation of how we combine two such structures.
Under appropriate conditions, reacting Atom with Rule or Rule with Atom gives a
new result N; we explain both what the conditions are and what N looks like below.
First, though, observe that reacting Atom with Atom or Rule with Rule never results
in a new result.

We’ll assume the entry Rule takes the form above; suppose also that the entry
Atom takes the form

Atom

〈
Pi+1

K - bi+1 ;Ei+1〉,
θ = mgu(Ei+1)

Also suppose none of the variables of Atom and Rule overlap. As in the proof of
completeness, we can take σ∪θ to give

σ∪θ = mgu(E1,b1 = b′1, . . .,Ei,bi = b′i,Ei+1)

We can use this to construct

σ′ = mgu(E1,b1 = b′1, . . .,Ei,bi = b′i,Ei+1,bi+1 = b′i+1)

if these equations have any solution.
Once we have the new unifier, there are two possible ways to store the result. If

i + 1 = m then we have completed the application of the rule; we can assemble a
proof tree P′ of

K - h← b′1 . . .b
′
m

P1
K - b′1 . . .

Pm

K - b′m
K - h

we can use P′ to construct N as:

Atom

〈P′;E1, . . .Em, (h← b1 . . .bm) = (h← b′1 . . .b
′
m)〉,

σ′

20

The bottom-up procedure processes queue Q against reposi-
tory D to yield final result R if

• Q is empty and D is R; or

• – We dequeue X from Q, leaving new queue Q′.

– Let S be the set of elements C such that reacting
F with X for F in D gives C.

– Let S′ hold a fresh copy of each element C of S
such that no F in Q or D subsumes C.

– We enqueue each element of S′ in Q′, giving next
queue Q′′.

– We add X to D giving new repository D′′.

– The bottom-up procedure processes Q′′ against
D′′ to yield final result R.

Figure 2: Bottom-up proof procedure with variables

Otherwise we still have a partial application of the rule; we construct N as:

Rule

h← b1 . . .bm(∈ K),〈 P1
K - b′1 ;E1〉 . . .〈

Pi
K - b′i ;Ei〉, 〈

Pi+1
K - b′i+1 ;Ei+1〉 ,

σ′

These definitions allow us to define the bottom up proof procedure of Figure 2.

6.3 Building proofs top down
A top down procedure builds proofs nondeterministically. The procedure maintains
an incomplete lifted proof of the query. At each step, the procedure extends the proof
by guessing a way to extend it. (The book uses the elegant term choose for this kind
of guess; see page 50.)

Incomplete proofs are also called tableaux. Incomplete proofs differ from com-
plete proofs in that some of the leaves in incomplete proofs can be unproved queries.

You can probably imagine how such a data structure could be defined, by anal-
ogy with complete proofs. For completeness, here is such a definition. A tableau
judgment either has the usual form

K - e

21

where e is a clause or the form of a query

?K - g

where g is an atomic clause. (Because we can assume that rules are accessed directly
from the knowledge base, that the only unproved clauses in a tableau are atomic.)

A tableau skeleton consists of a pair 〈P;E〉. P is a tree of tableau judgments, and
E is a list of equations. Leaves either take the form of proof skeletons:

〈K,e - f ;eθ = f 〉

Or they take the form of queries:

〈?K - g;�〉

Internal nodes in tableau skeletons are defined by the same rule as internal nodes
in proof skeletons. You have some tableau skeletons of this form—where all of the
skeletons for the bodies may involve queries or usual judgments:

〈
P0

K - h← b1∧ . . .∧bm ;E0〉 〈
P1

(?)K - b1 ;E1〉 . . . 〈
Pm

(?)K - bm ;Em〉

Then you can combine them together into a larger tableau skeleton. Again, you build
the new tree by using an analogue of the rule for constructing a larger ground proof
tree from smaller proof trees; you build the new list of equations by appending to-
gether all the lists of equations from the smaller proof skeletons. Explicitly, what
you get is this:

〈

P0
K - h← b1∧ . . .∧bm

P1
(?)K - b1 . . .

Pm

(?)K - bm

K - h ;E0,E1, . . .Em〉

A lifted tableau is defined as a proof skeleton 〈P,E〉 together with a substitution σ
that satisfies E and associates each variable with a ground term.

A tableau skeleton without any queries in its tree of judgments is a proof skele-
ton. And a lifted tableau without any queries in its associated tree of judgments is a
lifted proof.

Subject to the equation constraints, you can obtain one tableau from another by
extending it. Suppose you have a tableau skeleton T of

〈P;E〉

where P contains a leaf ?K - g. And suppose you have another tableau skeleton
T ′ of

〈 P′K - g ;E′〉

22

Modify P by replacing the leaf ?K - g in P by the new subtree P′. Call the result
P′′. Then you extend T by T ′ by creating the following tableau skeleton:

〈P;E,E′〉

If you have a substitution σ that satisfies E, you may be able to start from σ′ to obtain
a substitution that satisfies E and E′. Then the extended skeleton will in fact be an
extended tableau.

The top down procedure uses two kinds of extensions in particular. First, you
can extend at a leaf

?K - f

by using a tableau skeleton that matches f against a fact in the knowledge base:

〈K,e - f ;eθ = f 〉

Alternatively, you can extend that same leaf by using a tableau that matches f against
the head of a rule in the knowledge base and sets up goals corresponding to each of
the atomic clauses in the body of the rule. Such a tableau looks like

〈
K,e - f ← b1∧ . . .∧bm ?K - b1 . . . ?K - bm

K - f ;
eθ = (f ← b1∧ . . .∧bm),E1, . . .Em〉

The top down proof procedure works simply by starting from a tableau skeleton
and an associated unifier for its equations:

〈?K - g;�〉,�

Then it iterates nondeterministically. When it has a complete proof with no query
nodes, it returns the result. Otherwise, it chooses a way to extend the tableau skele-
ton using one of these two patterns, and computes a corresponding new mgu. If none
exists, it abandons the attempt as a failure.

To compare the definitions in the text on pages 57 and following, think of a gen-
eralized answer clause

yes(t1, . . ., tn)← a1∧ . . .am

as an abbreviation of a tableau skeleton together with a substitution satisfying its
equations:

〈P;E〉,σ
For each ai there is a corresponding query leaf ?K - gi in P such that giσ = ai (and
vice versa). You can check that the steps outlined in Figure 2.6 of the text describe
operations that correspond exactly to what is needed extend a tableau and obtain the
new abbreviation for it. The abbreviation can be nice if you want to think about just

23

what the top down procedure has left to do to prove a goal. However, it is also useful
to think about the proof that the procedure is actually building. Then you have to
continue to remember the work that you have done even after you finish proving a
subgoal, rather than erasing it the way subgoals are erased in resolving generalized
answer clauses.

24

