RECAP
The Agent in its Environment

- **Agent has a representation**
 - a sentence in a formal language
- **corresponding to a real-world relationship**
 - via the semantics of the language
- **Agent uses the rep to make decisions**
BASE CASE
Representation

- **Representation is an atomic formula:**
 \[p(t_1, \ldots, t_n) \]
 - predicate \(p \)
 - constants \(t_1, \ldots, t_n \)
 - constants represent objects in the world
 - predicate represents relation among them
 - written out for I/O with designer; really

BASE CASE
Semantics

- **Designer thinks up and specifies a model**
 - identifies objects and relations in the world needed to solve the problem
 - associates each constant with an object
 - associates each predicate with a relation

- **This determines**
 - what an atomic formula means
 - whether an agent’s rep matches the world
BASE CASE
Formal Semantics

- To study representations, we formalize:
 - Objects: universe or domain \(D \)
 - Consts: map \(\phi \) from const to \(D \)
 - Preds: map \(\pi \) from n-ary pred to \(D^n \rightarrow \{T,F\} \)
 Interpretation: \(\langle D, \phi, \pi \rangle \)
- \(p(t_1,\ldots,t_n) \) is true in interpretation iff
 \[\pi(p)\langle\phi(t_1),\ldots,\phi(t_n)\rangle = T \]

VARIABLES AND RULES
Representations

- Terms are either constants or variables
 - range over elements in the universe
 (strings beginning with caps or _)
- Extended atoms:
 \[p(t_1,\ldots,t_n) \]
 predicate terms
 - expression without variables is ground
VARIABLES AND RULES
(Formal) Semantics

• **Variables interpreted by assignment**
 – temporarily links each variable to an object
 – formally, map ρ from var to D

\[\delta(t_1, \rho) = \begin{cases}
\phi(t_1) & \text{if } t_1 \text{ is a constant} \\
\rho(t_1) & \text{if } t_1 \text{ is a variable}
\end{cases} \]

• $p(t_1, \ldots, t_n)$ is **true at ρ iff**

\[\pi(p)(\delta(t_1, \rho), \ldots, \delta(t_n, \rho)) = T \]

VARIABLES AND RULES
Representations

• **Rules** are a kind of compound formula

\[\underbrace{h \leftarrow b_1 \land \cdots \land b_n}_{\text{head}} \leftarrow \underbrace{b_1 \land \cdots \land b_n}_{\text{body}} \]

 – head and body are atomic formulas
 – meaning: head is true whenever body is
VARIABLES AND RULES
(Formal) Semantics

- \(h \leftarrow b_1 \land \ldots \land b_n \) is true at \(\rho \) iff
 - either \(h \) is true at \(\rho \)
 - or some \(b_i \) is not true at \(\rho \)

- **definite clause** \(f \) is either rule or atom
 - \(f \) is true iff
 - for all \(\rho \), \(f \) is true at \(\rho \)

- **knowledge base** \(K \): set of definite clauses
 - \(K \) is true iff every \(f \in K \) is true

USING SEMANTICS
Entailment

- Formalization of information in KB
- \(K \models f \) (read “\(K \) entails \(f \)”) iff
 - every interpretation where \(K \) is true is an interpretation where \(f \) is also true
Proof

- **For us, a proof is a data structure**
 - that describes why a knowledge base entails some fact.
- **To describe the data structure**
 - A substitution σ is a finite set of the form
 \[
 \{ V_1 / t_1, \ldots, V_n / t_n \}
 \]
 - The application of σ to e, $e\sigma$, is e with occurrences of V_i replaced by t_i.

Proof

- **A proof is a tree of judgments**
 - A judgment takes the form
 \[
 K \rightarrow f
 \]
 read “f follows from K”
 - K is a knowledge base
 - f is a ground clause
- **Leaf is a judgment** K, $e \rightarrow e\sigma$
Proof

- **Internal nodes**
 - we can combine proofs together thus:

\[
P_o \quad P_i \quad P_n
\]

\[
\begin{align*}
K & \rightarrow h \leftarrow b_1 \wedge \ldots \wedge b_n \\
K & \rightarrow b_1 \\
& \ldots \\
K & \rightarrow b_n \\
\hline
K & \rightarrow h
\end{align*}
\]

Proof

- When we have

\[
P
\]

\[
K \rightarrow f
\]

we say \(f \) is provable from \(K \), or \(K \vdash f \)
- General result, for ground \(f \):

\[
K \vdash f \iff K \vdash f
\]