

BASE CASE Formal Semantics

- To study representations, we formalize:
 - Objects: universe or domain D
 - Consts: map ϕ from const to D
 - Preds: map π from n-ary pred to $D^n \rightarrow \{T,F\}$
 - Interpretation: $\langle D, \phi, \pi \rangle$
- p(t1,...,tn) is true in interpretation iff

 $\pi(p)\langle \phi(t_1),\ldots,\phi(t_n)\rangle=\mathsf{T}$

- temporarily links each variable to an object

– formally, map ρ from var to D

 $\frac{\delta(t_1,\rho)}{\delta(t_1,\rho)} = \begin{cases} \phi(t_1) \text{ if } t_1 \text{ is a constant} \\ \rho(t_1) \text{ if } t_1 \text{ is a variable} \end{cases}$

• $p(t_1,...,t_n)$ is true at ρ iff $\pi(p)\langle \delta(t_1,\rho),...,\delta(t_n,\rho)\rangle = T$

VARIABLES AND RULES (Formal) Semantics

- h ← b₁ ∧ ... ∧ b_n is true at ρ iff either h is true at ρ or some b_i is not true at ρ
- definite clause f is either rule or atom
 - f is <mark>true</mark> iff
 - for all ρ , f is true at ρ
- knowledge base K: set of definite clauses
 - K is true iff every $f \in K$ is true

