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DCS 440, Artificial Intelligence, Midterm 1, 1999
80 minutes, open book, open notes.

This exam has three problems on eight single-sided pages.
Answer each question in the space provided.

Use backs for further work but indicate when you do.

1. Unix systems often require you to create useful files in several steps. For example, the specifica-
tion of this test was originally stored as text in a tex file. The printed version was created by first
running a program called latex on the tex file to compute a description of where letters belong
on a page; the description was stored in a new file, the dvi file. A program for the printer was
constructed from this description using the command dvips; the printer program was stored in a
ps file. Finally, another command, lpr, executed the printer program to create the master copy
of the test. A common result is that your unix directories become cluttered with files that you do
not need because you have used them for what they were created for and moreover you could make
them again if you needed them again.

Imagine creating a software agent that would traverse your unix files and clean up after you.
Here is a description of what the agent might do. It goes into a directory called work and finds
that there are three files there: one called report.tex, one called report.dvi and one called
report.ps. It concludes that the two files report.dvi and report.ps were stored tempo-
rary files that could be recreated from report.tex and deletes them.

[Questions begin on next page]
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1a. Suppose we use the following kinds of objects to represent this situation. We have files
themselves, stems which name files and extensions which give the kind of data stored in the file.
Introduce enough symbols of each of these types to describe the contents of the work directory—
three files: one called report.tex, one called report.dvi and one called report.ps)—by
listing those symbols and their intended interpretations.

Symbol Interpretation
f1 the file called report.tex
f2 the file called report.dvi
f3 the file called report.ps
rep the stem report
tex the extension .tex
dvi the extension .dvi
ps the extension .ps

1b. Suppose we have two binary relations stem(F,S) true when the name of file F begins
with stem S and extension(F,E) true when the name of file F ends with extension E. Write
atomic facts using these relations to describe the contents of the work directory.

stem(f1,rep). extension(f1,tex).
stem(f2,rep). extension(f2,dvi).
stem(f3,rep). extension(f3,ps).
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1c. Now we define a binary relation derivable(I,O) that is true if there is a program that
computes file O as output given fileI as input. Give two clauses for derivable(I,O) that apply
in our scenario, in terms of the kinds of objects and relations already defined.

derivable(I,O) :-
stem(I,S), stem(O,S)
extension(I,tex), extension(O,dvi).

derivable(I,O) :-
stem(I,S), stem(O,S)
extension(I,dvi), extension(O,ps).

1d. Define a unary relation delete(F) that is true if a file should be deleted because it can
be recreated automatically when needed.

delete(F) :- derivable(X,F).
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1e. Consider two ways for our file-cleaning agent to make its decisions. In the first way, the
agent repeatedly finds a file f for which delete(F) is true, deletes it, and reexamines the direc-
tory to assess the progress it has made. In the second way, the agent first finds all the files for which
delete(F) is true and then deletes each in turn. Is there a reason to prefer one over another?

Using the rules suggested as answers for problems 1c and 1d, only the second
strategy will be successful in deleting all temporary files. The first strategy
may delete an intermediate temporary file and then decide that files derived
from it need to be preserved.
Other considerations: if the directory is changing quickly and the agent must
constantly strive to keep it free of temporary files, something like the first
strategy may be necessary; otherwise the first strategy will require more con-
sultation of the directory and more querying of the database.

1f. This example makes a strong assumption. Discuss this assumption and its consequences
with respect to the following scenario. Sandy gets email from Robin of the text of a paper they are
collaborating on, and saves it in a file called robin.tex. Later, Robin sends Sandy an output file
of the first chapter of a novel to read for fun; Sandy saves that as robin.dvi. Is it possible to
represent this situation using the kinds of objects and relations described above? Indicate which of
the clauses you wrote in 1c and 1d are true and which are false in this scenario.

The assumption is that all files with the same stem represent the same collec-
tion of data; thus you can tell whether a file has been derived when it shares
a stem with a source file and has a related extension (as in the answer to 1c).
This would lead to the robin.dvi file being deleted (incorrectly) in this
scenario.
The scenario still involves files, stems and extensions so the right objects
and relations are available. But now the first rule (deriving dvi files from tex
files) is false because there is a case that satisfies the body of the rule but
not the head. The second rule is true because no cases apply to it. The third
rule is true – and in fact can continue to be regarded as true even in the more
general scenario – if a file truly is derivable then it continues to be a good
idea to delete it.
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2a. Define a relation prefix(S,L) true if list L begins with a copy of list S (that is, with the
same elements in the same order) but continues by possibly having additional elements. (Do not
appeal to any other relations in writing this definition.)

prefix([],L).
prefix([A|S],[A|L]) :-

prefix(S,L).

2b. Using this definition (if possible), provide the answer(s) to the two queries that follow. Give
the value for S as the answer in all cases; pick two answers and also describe the derivations or
proofs of those answers in any convenient notation (e.g., the full proof notation, the abbreviated
notation from class, the notation of SLD derivations from the text).

• ?prefix(S,[a,b])

S = []
S = [] (match 1)
?prefix(S,[a,b])

S = [a]

S1 = [] (match 1)
?prefix(S1,[b])
S = [a|S1] (match 2)
prefix(S,[a,b])

S = [a,b]

S2 = [] (match 1)
?prefix(S2,[])
S1 = [b|S2] (match 2)
?prefix(S1,[b])
S = [a|S1] (match 2)
prefix(S,[a,b])
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• ?prefix([a,b],S)

S = [a,b|S2]

S2 unconstrained (match 1)
?prefix([],S2)
S1 = [b|S2] (match 2)
?prefix([b],S1)
S = [a|S1] (match 2)
prefix([a,b],S)

2c. Recall that the prolog proof search space for a query can be infinite if there is an increasing
series of incomplete proofs, and given one of these incomplete proofs, you can always apply a rule
to obtain another of them. Otherwise—if the prolog search space is finite—prolog can compute all
answers to a query and terminate.

If S is a ground term, can the prolog proof search space for ?prefix(S,L) be infinite or will
prolog always terminate after finding all answers?

At each step of backward chaining to build the proof, the first argument of
prefix is reduced to a smaller ground term. So the proof search space is
finite and Prolog always terminates.

If L is a ground term, can the prolog proof search space for ?prefix(S,L) be infinite or will
prolog always terminate after finding all answers?

At each step of backward chaining to build the proof, the first argument of
prefix is reduced to a smaller ground term. So the proof search space is
finite and Prolog always terminates.
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3 Great-uncle Jasper has bequeathed his coin collection to Sandy and Robin. It contains just five
coins; their values are $5, $7, $8, $10 and $16, for a total of $46. Sandy and Robin decide that their
two shares of the collection should have equal value. They have to figure out who gets what—it is
(in part) a search problem.

The search space for this problem—like any other search problem—consists of a set of states,
a start state, a set of goal states, and a way of going from one state to another. Let’s define this as
follows:

• A state consists of a set of coins to be given to Sandy. Since Sandy gets no more than half,
the value of this set must be $23 or less. Write a state as a list of values; for instance a state
where Sandy gets the first two coins is:

5, 7

• In the start state, Sandy gets no coins.

• A goal state is a set of coins whose value is $23.

• You go from one state to another by adding to Sandy’s take another coin that Sandy hasn’t
been given yet and that is not worth more than any coin Sandy already has. (In other words,
Sandy gets more valuable coins before less valuable ones.)

[Questions begin on next page]
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3a Draw the search space Sandy and Robin have in dividing Jasper’s coins (worth $5, $7, $8,
$10 and $16), according to this definition. Leave plenty of room beside each node to answer the
remaining questions.
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3b Label the start state with an S and label any goal states with a G.
3c Assuming neighbors are added to the search frontier in top to bottom/left to right order (ac-

cording to your diagram), use a B to label the first eight nodes expanded in breadth-first search. Use
a D to label the first eight nodes expanded in depth-first search.

3d Describe informally what would happen if we change the set of neighbors, so that we could
give Sandy any other coin at any step. Would the number of goal states change? Would the search
problem be easier or harder? Explain.

Let’s suppose that we continue to represent a state by the list of coins as-
signed in order. Then the number of states and the number of paths will both
explode with this change. This will tend to make this kind of search prob-
lem more difficult, especially in cases where there are few or no solutions and
more of the space has to be explored in order to obtain an answer. But the
solutions found with the expanded space will not change—any list of coins
can be sorted to find a corresponding solution in the original search space.


