CS 205 Sections 07 and 08.
Midterm 1-3/3/04.
8 questions, 5 pages, 150 points.
Your name: \qquad

1. (24 points) Fill in the truth table below:

P	Q	R	$P \leftrightarrow Q$	$\neg Q \vee R$	$(P \leftrightarrow Q) \rightarrow(\neg Q \vee R)$
T	T	T			
T	T	F			
T	F	T			
T	F	F			
F	T	T			
F	T	F			
F	F	T			
F	F	F			

Answer:

P	Q	R	$P \leftrightarrow Q$	$\neg Q \vee R$	$(P \leftrightarrow Q) \rightarrow(\neg Q \vee R)$
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	F	T	T
T	F	F	F	T	T
F	T	T	F	T	T
F	T	F	F	F	T
F	F	T	T	T	T
F	F	F	T	T	T

2. (18 points) Show these formulas are logically equivalent using laws for logical equivalence.
(a) $\neg(P \wedge Q \wedge \neg R)$

$$
P \wedge Q \rightarrow R
$$

Answer:

$$
\begin{array}{ll}
\neg(P \wedge Q \wedge \neg R) & \\
\neg(P \wedge Q) \vee \neg \neg R & \\
\text { De Morgan's law } \\
\neg(P \wedge Q) \vee R & \text { Double negation } \\
(P \wedge Q) \rightarrow R & \text { Implication }
\end{array}
$$

(b) $\neg \forall x(P(x) \rightarrow \neg Q(x)) \quad \exists x(P(x) \wedge Q(x))$

Answer:

$$
\begin{array}{ll}
\neg \forall x(P(x) \rightarrow \neg Q(x)) & \\
\exists x \neg \neg P(x) \rightarrow \neg Q(x)) & \text { Quantifier and negation } \\
\exists x \neg(\neg P(x) \vee \neg Q(x)) & \text { Implication } \\
\exists x(\neg \neg P(x) \wedge \neg \neg Q(x)) & \text { De Morgan } \\
\exists x(P(x) \wedge Q(x)) & \text { Double negation }
\end{array}
$$

3. (24 points) This question uses the predicates S, P and J :
$S(x)$ represents the proposition that x is a sandwich.
$P(x)$ represents the proposition that x has peanut butter.
$J(x)$ represents the proposition that x has jelly.
Represent the following statements in logic:
(a) Everything with jelly or peanut butter is a sandwich.

Answer:

$$
\forall x(J(x) \vee P(x) \rightarrow S(x))
$$

(b) No sandwich has peanut butter without jelly.

Answer:

$$
\neg \exists x(S(x) \wedge P(x) \wedge \neg J(x))
$$

(c) Some sandwich has jelly without peanut butter.

Answer:

$$
\exists x(S(x) \wedge J(x) \wedge \neg P(x))
$$

4. (18 points) Now let $S S$ be the set of sandwiches, $P B$ be the set of things with peanut butter and $J J$ be the set of things with jelly. Give a mathematical expression that states the relationships among these sets if you know:
(a) Everything with jelly or peanut butter is a sandwich.

Answer:
$J J \cup P B \subseteq S S$
(b) No sandwich has peanut butter without jelly.

Answer:

$$
S S \cap(P B-J J)=\emptyset
$$

(c) Some sandwich has jelly without peanut butter.

Answer:

$S S \cap(J J-P B) \neq \emptyset$
5. (16 points) True or false:

$$
\forall S \forall a(\{a\} \in P(S) \leftrightarrow a \in S)
$$

In other words, $\{a\}$ is in $P(S)$, the power set of S, exactly when $a \in S$. Justify your answer with a short, careful mathematical argument using English and formal notation as you like.

Answer:

True.
By the definition of the power set, $\{a\} \in P(S)$ implies $\{a\} \subseteq S$. By the definition of subsets, $\{a\} \subseteq S$ implies $a \in S$. Conversely, $a \in S$ implies $\{a\} \subseteq S$, and $\{a\} \subseteq S$ implies $\{a\} \operatorname{in} P(S)$.
6. (16 points) True or false:

$$
\neg \exists S \exists x(x \in S \wedge x \subseteq S)
$$

In other words, you can't have a set x be both a member and a subset of the same set S. Justify your answer with a short, careful mathematical argument mixing English and formal notation as you like.

Answer:

False.
There is an S, namely $\{\emptyset\}$ and an x, namely \emptyset such that $x \in S \wedge x \subseteq S$. By the definition of element, $\emptyset \in\{\emptyset\}$. By the definition of \emptyset, \emptyset has no elements. Thus all the elements of \emptyset are elements of $\{\emptyset\}$. So $\emptyset \subseteq\{\emptyset\}$.
7. (16 points) Make the two assumptions:

$$
\begin{aligned}
& \forall x Q(x) \\
& \exists x P(x)
\end{aligned}
$$

Give a formal proof of

$$
\exists x(P(x) \wedge Q(x))
$$

Answer:

1	$\forall x Q(x)$	Premise
2	$\exists x P(x)$	Premise
3	$P(a)$	Premise for existential instantiation 2
4	$Q(a)$	Universal instantiation 1
5	$P(a) \wedge Q(a)$	Conjunction 3,4
6	$\exists x(P(x) \wedge Q(x))$	Existential generalization 5
7	$\exists x(P(x) \wedge Q(x))$	Existential instantiation 2,3-6

8. (18 points) Make the assumption:

$$
\forall x \forall y(S(x) \wedge A(x, y) \rightarrow \neg A(y, x))
$$

(A shark only attacks something that won't attack it.)
Give a formal proof of

$$
\forall x(A(x, x) \rightarrow \neg S(x))
$$

(Anything that attacks itself isn't a shark.)
Answer:

1	$\forall x \forall y(S(x) \wedge A(x, y) \rightarrow \neg A(y, x))$	Premise
2	$A(s, s)$	Premise for conditional proof
3	$\forall y(S(s) \wedge A(s, y) \rightarrow \neg A(y, s))$	Universal Instantiation, 1
4	$S(s) \wedge A(s, s) \rightarrow \neg A(s, s)$	Universal Instantiation, 3
5	$S(s)$	Premise for indirect proof
6	$S(s) \wedge A(s, s)$	Conjunction 2, 5
7	$\neg A(s, s)$	Modus ponens 4,6
8	FALSE	Contradiction 2,7
9	$\neg S(s)$	Indirect proof, 4-8
10	$A(s, s) \rightarrow \neg S(s)$	Conditional proof 2-9
11	$\forall x(A(x, x) \rightarrow \neg S(x))$	Universal generalization 10

