CS 205 Sections 07 and 08. Midterm 1 - 3/3/04. 8 questions, 5 pages, 150 points.

Your name: _____

1. (24 points) Fill in the truth table below:

	0	D			(\mathbf{D}, \mathbf{O}) (\mathbf{O}) (\mathbf{D})
P	Q	R	$P \leftrightarrow Q$	$\neg Q \lor R$	$(P \leftrightarrow Q) \rightarrow (\neg Q \lor R)$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

Answer:

Р	Q	R	$P \leftrightarrow Q$	$\neg Q \lor R$	$(P \leftrightarrow Q) \rightarrow (\neg Q \lor R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	F	Т	Т
F	Т	F	F	F	Т
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

2. (18 points) Show these formulas are logically equivalent using laws for logical equivalence.

(a)
$$\neg (P \land Q \land \neg R)$$
 $P \land Q \to R$
Answer:
 $\neg (P \land Q \land \neg R)$
 $\neg (P \land Q) \lor \neg \neg R$ De Morgan's law
 $\neg (P \land Q) \lor R$ Double negation
 $(P \land Q) \to R$ Implication
(b) $\neg \forall x (P(x) \to \neg Q(x))$ $\exists x (P(x) \land Q(x))$
Answer:
 $\neg \forall x (P(x) \to \neg Q(x))$ $\exists x \neg (P(x) \to \neg Q(x))$ Quantifier and negation
 $\exists x \neg (\neg P(x) \lor \neg Q(x))$ Implication
 $\exists x (\neg \neg P(x) \land \neg \neg Q(x))$ De Morgan
 $\exists x (P(x) \land Q(x))$ Double negation

- 3. (24 points) This question uses the predicates *S*, *P* and *J*:
 - S(x) represents the proposition that x is a sandwich.
 - P(x) represents the proposition that *x* has peanut butter.
 - J(x) represents the proposition that x has jelly.

Represent the following statements in logic:

(a) Everything with jelly or peanut butter is a sandwich. **Answer**:

 $\forall x (J(x) \lor P(x) \to S(x))$

(b) No sandwich has peanut butter without jelly.

Answer:

 $\neg \exists x (S(x) \land P(x) \land \neg J(x))$

(c) Some sandwich has jelly without peanut butter.

Answer:

 $\exists x (S(x) \land J(x) \land \neg P(x))$

- 4. (18 points) Now let *SS* be the set of sandwiches, *PB* be the set of things with peanut butter and *JJ* be the set of things with jelly. Give a mathematical expression that states the relationships among these sets if you know:
 - (a) Everything with jelly or peanut butter is a sandwich.

Answer:

 $JJ \cup PB \subseteq SS$

(b) No sandwich has peanut butter without jelly.

Answer:

 $SS \cap (PB - JJ) = \emptyset$

(c) Some sandwich has jelly without peanut butter.

Answer:

 $SS \cap (JJ - PB) \neq \emptyset$

5. (16 points) True or false:

$$\forall S \forall a(\{a\} \in P(S) \leftrightarrow a \in S)$$

In other words, $\{a\}$ is in P(S), the power set of *S*, exactly when $a \in S$. Justify your answer with a *short*, *careful* mathematical argument using English and formal notation as you like.

Answer:

True.

By the definition of the power set, $\{a\} \in P(S)$ implies $\{a\} \subseteq S$. By the definition of subsets, $\{a\} \subseteq S$ implies $a \in S$. Conversely, $a \in S$ implies $\{a\} \subseteq S$, and $\{a\} \subseteq S$ implies $\{a\}$ in P(S).

6. (16 points) True or false:

$$\neg \exists S \exists x (x \in S \land x \subseteq S)$$

In other words, you can't have a set *x* be both a member and a subset of the same set *S*. Justify your answer with a *short*, *careful* mathematical argument mixing English and formal notation as you like.

Answer:

False.

There is an *S*, namely $\{\emptyset\}$ and an *x*, namely \emptyset such that $x \in S \land x \subseteq S$. By the definition of element, $\emptyset \in \{\emptyset\}$. By the definition of \emptyset , \emptyset has no elements. Thus all the elements of \emptyset are elements of $\{\emptyset\}$. So $\emptyset \subseteq \{\emptyset\}$.

7. (16 points) Make the two assumptions:

$$\forall x Q(x) \\ \exists x P(x)$$

Give a formal proof of

$$\exists x (P(x) \land Q(x))$$

Answer:

1	$\forall x Q(x)$	Premise
2	$\exists x P(x)$	Premise
3	P(a)	Premise for existential instantiation 2
4	Q(a)	Universal instantiation 1
5	$P(a) \wedge Q(a)$	Conjunction 3,4
6	$\exists x (P(x) \land Q(x))$	Existential generalization 5
7	$\exists x (P(x) \land Q(x))$	Existential instantiation 2,3–6

8. (18 points) Make the assumption:

$$\forall x \forall y (S(x) \land A(x, y) \to \neg A(y, x))$$

(A shark only attacks something that won't attack it.)

Give a formal proof of

$$\forall x (A(x,x) \to \neg S(x))$$

(Anything that attacks itself isn't a shark.)

Answer:

1	$\forall x \forall y (S(x) \land A(x, y) \to \neg A(y, x))$	Premise
2	A(s,s)	Premise for conditional proof
3	$\forall y(S(s) \land A(s,y) \rightarrow \neg A(y,s))$	Universal Instantiation, 1
4	$S(s) \wedge A(s,s) \rightarrow \neg A(s,s)$	Universal Instantiation, 3
5	S(s)	Premise for indirect proof
6	$S(s) \wedge A(s,s)$	Conjunction 2, 5
7	$\neg A(s,s)$	Modus ponens 4,6
8	FALSE	Contradiction 2,7
9	eg S(s)	Indirect proof, 4–8
10	$A(s,s) \rightarrow \neg S(s)$	Conditional proof 2–9
11	$\forall x (A(x,x) \rightarrow \neg S(x))$	Universal generalization 10