1. Create a finite automaton whose inputs are strings containing the letters a, b and c. You automaton should recognize any string that contains at least one a and at least one b but no c's. Clearly label the states and transitions. Indicate the starting state and any final states.

2. An arcade game consists of three raised cylinders, labeled A, B and C respectively. The object of the game is to push down the cylinders in the proper sequence. A cylinder that is pushed down out of sequence will stay down, but the other two cylinders will pop up. When a cylinder is pushed down in its proper position in the sequence, all previous cylinders in the sequence will also stay down. The proper sequence is BCA. Design a finite automaton that models this arcade game.

Hint. Use the states to represent which cylinders are down. There is only one final state.

3. Let A be a nonempty set such that $A^2 = A$.

 (a) Prove that $A^+ = A$.

 (b) Prove that $\lambda \in A$.

 Hint. Consider the cases $|A| = 1$ and $|A| > 1$. For the second case, consider a non-null string in A of minimal length.

 (c) Prove that $A^* = A$.

4. An infix expression is written in the form $exp \ op \ exp$, where exp is any expression and op is a binary operator. For this problem, assume that the expressions are either integers or one-letter variables. Also, assume that operators are one of the four standard arithmetic operators: $\{+,-,\times,\div\}$. Write a regular expression that matches input expressions with these restrictions.

5. Let L be a language over some vocabulary V. The complement of L is denoted by \bar{L} and consists of all the strings in V^* that are not in L. Prove that if L is a regular language, then \bar{L} is also a regular language.

 Hint. Use the fact that a language is a regular if and only if it is accepted by a finite state machine. Think about what the final and nonfinal states do in a finite state machine that accepts L.