1. Each of the following items gives a condition on a function. Construct a function satisfying that condition. The domain and codomain of your function must be chosen from the sets

\[U = \{a, b, c\}, V = \{x, y, z\}, W = \{1, 2\} \]

(a) One-to-one but not onto.
(b) Onto but not one-to-one.
(c) One-to-one and onto.
(d) Neither one-to-one nor onto.

2. Each of the following items specifies a function \(f : \mathbb{N} \to \mathbb{N} \), and specifies certain of its properties. In each case, give a precise mathematical argument showing that the function satisfies the properties.

(a) \(f(x) = 2x \) — one-to-one but not onto.
(b) \(f(x) = \lfloor x/2 \rfloor \) — onto but not one-to-one.
(c) \(f(x) = \begin{cases} x - 1 & \text{if } x \text{ is odd} \\ x + 1 & \text{otherwise} \end{cases} \) — one-to-one and onto.

3. Let \(A, B \) and \(C \) be nonempty sets, and let \(g : A \to B \) and \(h : A \to C \) and let \(f : A \to B \times C \) be defined by

\[f(x) = (g(x), h(x)) \]

Give a precise mathematical argument for each of the following statements.

(a) If \(f \) is onto, then \(g \) and \(h \) are onto.
(b) It is not the case that \(f \) must be onto whenever \(g \) and \(h \) are onto.
(c) If either \(g \) is one-to-one or \(h \) is one-to-one, then \(f \) is one-to-one.
(d) It is possible for \(f \) to be one-to-one without either \(g \) or \(h \) being one-to-one.

4. Prove or disprove each of these statements about the floor and ceiling functions.

(a) For all real numbers \(x \),

\[\lfloor \lceil x \rceil \rfloor = \lfloor x \rfloor \]

(b) \(\lceil x \rceil = \lfloor x \rfloor \) if and only if \(x \) is an integer.

(c) For all positive integers \(r \),

\[\left\lfloor \log_2 \left(\frac{r + 1}{2} \right) \right\rfloor = \left\lfloor \log_2 \left(\frac{r + 1}{2} \right) \right\rfloor \]