
Partial Correctness of GCD
Matthew Stone
Review Lecture

April 2004

These notes tie together the course material we’ve done so far: logic, functions, numbers and
induction. We’ll be studying the following computer program, called GCD:

proceduregcd(a,b)

x := a
y := b

while y 6= 0
begin

r := x mod y
x := y
y := r

end

We will assume that all the variablesa, b, x andy must take integer values. We also assume thata
andb are positive and thata≥ b. So ourinitial assertionabout this program will be:

a≥ b > 0

Thefinal assertion, meanwhile, just says

x = gcd(a,b)

In other words, when the loop terminates,x is the greatest common divisor ofa andb. We will
show that when the initial statement is true and we run GCD, the final assertion becomes true.

Let’s review division and the logical ideas behind the greatest common divisor.

1. If a is a positive integer andb is an integer, we say thata divides b, or a is a divisor ofb, if
there is an integerc such thatac= b.

We indicate thata dividesb with the notationa|b.

2. A common divisorof two integersa andb is an integerd such thatd|a andd|b.

3. Thegreatest common divisorof two integersa andb is exactly that—of the set of common
divisors, it’s the largest.

Formally,x = gcd(a,b) is equivalent by definition to:

x|a∧x|b∧∀d(d|a∧d|b→ d≤ x)

The first two conjuncts of this formula say thatx is a common divisor ofa andb. The rest of
the formula says that any other common divisor is less than or equal tox.

1

On the basis of Euclid’s algorithm we can show something stronger about the greatest common
divisor. We can show that (ifa andb are positive integers):

x = gcd(a,b)↔ x > 0∧x|a∧x|b∧∀d(d|a∧d|b→ d|x)

In other words, exactly when every divisor ofa andb divides their positive common divisorx, x
is the greatest common divisor ofa andb. For now, all we need is that whenx, a andb are all
positive integers, if we know

x|a∧x|b∧∀d(d|a∧d|b→ d|x)

(that every common divisor ofa andb dividesx) then it follows thatx = gcd(a,b).
To prove this, we follow the form of the logical statement of the definition of gcd(a,b). We

consider an arbitrary hypothetical common divisor ofa andb. Call it d0. We need to show that
d0 ≤ x. By universal instantiation of our main assumption, we know thatd0|x. In other words,
there is some integer, which we will callc0 for the purposes of argument, such thatc0d0 = x. Now
sincex > 0, c0 6= 0. Soc0d0≥ d. Sincec0d0 = x, that’s just another way of sayingx≥ d. Sinced0

was an arbitrary common divisor ofa andb, we can conclude thatx is greater than any common
divisor ofa andb. Sox = gcd(a,b).

The other fact that we will want to remember about division is this. Ifa,b,s and t are all
integers then

d|a∧d|b→ d|sa+ tb

To show this we just unpack the definitions.d|a meansc0d = a for some unspecified integer we
will call c0. d|b meansc1d = b for some unspecified integer we will callc1. That means that
sa+ tb = sc0d+ tc1d = (sc0 + tc1)d. Sincesc0 + tc1 is some integerc2, this meansc2d = sa+ tb
so by definitiond|sa+ tb.

This has the further consequence that

d|a∧d|b→ d|a mod b

The reason is thata mod b= 1a−qb, whereq is the quotient ofa andb.
On the basis of these definitions and arguments, we now define and theloop invariantof the

while loop of GCD. Each time thewhile loop starts, we need to know the following thing:

x > 0∧x≥ y≥ 0∧∀d(d|a∧d|b→ d|x∧d|y)

The two conjuncts say thatx is positive and no smaller thany which is no smaller than 0. The third
conjunct says that only the common divisors ofx andy are common divisors ofa andb.

The key final element is our assumptions about how programs work. The state of a program is
an function mapping values to variables. Executing an assignment changes this function. Ife is a
mathematical expression in terms of variables andv is the value ofe in the current program state,
then after running the statementx := e, then the value ofx is v. This is called theassignmentclause.
If v′ is the value of some other variabley beforex := e, thenv′ is still the value ofy afterwards.
This is called theinertia clause.

Here then are the key things we will show to be true at the different points in the execution of
GCD, given the assumption thata≥ b > 0 is the initial assertion:

2

proceduregcd(a,b)

(A.) a≥ b > 0
x := a
y := b

(B.) x = a∧y = b∧a≥ b > 0
(C.) x > 0∧x≥ y≥ 0∧∀d(d|a∧d|b↔ d|x∧d|y)

while y 6= 0
begin

r := x mod y
(D.) x≥ y > r ≥ 0∧∀d(d|a∧d|b↔ d|y∧d|r)

x := y
y := r

(E.≡C.) x > 0∧x≥ y≥ 0∧∀d(d|a∧d|b↔ d|x∧d|y)
end

(F.) x > y = 0∧∀d(d|a∧d|b↔ d|x∧d|y)
(G.) x > 0∧x|a∧x|b∧∀d(d|a∧d|b→ d|x)
(H.) x = gcd(a,b)

We organize the proof into an outline. The items follow the structure of the program; the displayed
formulas show how we gradually establish progressively more powerful mathematical statements
about the program.

1. First we show
A{x := a;y := b}B

This is an obvious consequence of assignment and inertia.

2. Then we show
B→C

by logic. B lets us substitutea for x andb for y in C, which makes the inequalities inC follow
immediately fromB and gives the universal statement the form∀d(p↔ p). We conclude
that

A{x := a;y := b}C
by putting these two things together.

3. We next show
C∧y 6= 0{r := x mod y}D

This step mixes logical and mathematical reasoning. The key thing is that after we execute
r := x mod y, r = x mod y, but x andy are unchanged. That means we still havex≥ y > 0.
It also meansy > r ≥ 0, by the definition ofmod. So to showD is true, we only need to
show∀d(d|a∧d|b↔ d|y∧d|r). So considerd0 such thatd0|a∧d0|b. By C, we know that
d0|x andd0|y. But we noted earlier that this meansd0|x mod y. Sod0|y∧d0|r. Conversely,
supposed0|y∧d0|r. Then againd0|x becausex = qy+1r. So byC, we knowd0|a andd0|b.
This completes the argument.

3

4. We then show that
D{x := y;y := r}E

using assignment and inertia. Now we conclude that

C∧y 6= 0{r := x mod y;x := y;y := r}C

by putting these two together (noting thatC≡ E).

5. We can now use the induction principle forwhile loops to get:

C{while . . .end}C∧y = 0

That means by sequence

A{x := a;y := b;while . . .end}C∧y = 0

6. Now we do a last little bit of logic. We knowC∧y = 0≡ F . We need to showF →G. We
havex > 0 immediately. Why doesx|a andx|b? We know∀d(d|x∧d|y→ d|a∧d|b). We
instantiatex for d and recall thaty = 0: x|x∧ x|0→ x|a∧ x|a. But of course sincex = 1x
andx = 00, x|x andx|0. Sox|a andx|b. Finally we get∀d(d|a∧d|b→ d|x) by logic from
C, which entails that∀d(d|a∧ d|b→ d|x∧ d|y). Thus we knowF → G. But we gave an
argument earlier thatG→ H:

x > 0∧x|a∧x|b∧∀d(d|a∧d|b→ d|x)→ x = gcd(a,b)

Putting these observations together gives:

A{x := a;y := b;while . . .end}H

This concludes the proof that the program is correct.

4

