Partial Correctness of GCD
Matthew Stone
Review Lecture

April 2004

These notes tie together the course material we've done so far: logic, functions, numbers and
induction. We'll be studying the following computer program, called GCD:

procedure gcd@,b)

X:=a

y:=b

while y £ 0

begin
r:=xmody
X:=y
yi=r

end

We will assume that all the variablasb, x andy must take integer values. We also assumedhat
andb are positive and that > b. So ourinitial assertionabout this program will be:

a>b>0
Thefinal assertionmeanwhile, just says
X =gcd(a,b)

In other words, when the loop terminatess the greatest common divisor afandb. We will
show that when the initial statement is true and we run GCD, the final assertion becomes true.
Let’s review division and the logical ideas behind the greatest common divisor.

1. If ais a positive integer anldis an integer, we say thatdivides b or a is a divisor ofb, if
there is an integer such thatic=h.

We indicate thaa dividesb with the notatiora|b.
2. A common divisoof two integersa andb is an integed such thad|a andd|b.

3. Thegreatest common divisaf two integersa andb is exactly that—of the set of common
divisors, it's the largest.

Formally,x = gcd(a, b) is equivalent by definition to:
xjaAnxbAVd(dland|b— d <x)

The first two conjuncts of this formula say thats a common divisor od andb. The rest of
the formula says that any other common divisor is less than or equal to

1

On the basis of Euclid’s algorithm we can show something stronger about the greatest common
divisor. We can show that (& andb are positive integers):

X =gcda,b) < x> 0Axjarnx|bAVd(dlard|b— d|x)

In other words, exactly when every divisor @andb divides their positive common divisot x
is the greatest common divisor afandb. For now, all we need is that wheq a andb are all
positive integers, if we know

xjaAnx/bAVd(djand|b— d|x)

(that every common divisor & andb dividesx) then it follows thatx = gcd(a, b).

To prove this, we follow the form of the logical statement of the definition of(gdd). We
consider an arbitrary hypothetical common divisoradndb. Call it dg. We need to show that
do < x. By universal instantiation of our main assumption, we know that. In other words,
there is some integer, which we will calj for the purposes of argument, such tbgdy = x. Now
sincex > 0, ¢y # 0. Socpdy > d. Sincecpdg = X, that’s just another way of saying> d. Sincedy
was an arbitrary common divisor afandb, we can conclude thatis greater than any common
divisor ofa andb. Sox = gcd(a,b).

The other fact that we will want to remember about division is thisa,b,s andt are all
integers then

dland|b — d|sa+tb

To show this we just unpack the definitiord{a meanscod = a for some unspecified integer we
will call co. d|b meanscid = b for some unspecified integer we will call. That means that
sa+th=sqd+tcid = (s@+tcy)d. Sincesg+tcy is some integec,, this meang,d = sa+tb
so by definitiond|sa+tb.

This has the further consequence that

dland|b—djamod b

The reason is tha mod b= 1a— gb, whereq is the quotient of andb.
On the basis of these definitions and arguments, we now define atabfhewvariantof the
while loop of GCD. Each time thehile loop starts, we need to know the following thing:

X>0AX>y>0AVd(dland|b— d|xAdly)

The two conjuncts say thatis positive and no smaller tharwhich is no smaller than 0. The third
conjunct says that only the common divisorxa@ndy are common divisors & andb.

The key final element is our assumptions about how programs work. The state of a program is
an function mapping values to variables. Executing an assignment changes this fundiisra If
mathematical expression in terms of variables arglthe value ok in the current program state,
then after running the statemeqit= g, then the value ofisv. This is called thassignmentlause.

If V' is the value of some other variabjebeforex := e, thenV is still the value ofy afterwards.
This is called thenertia clause.

Here then are the key things we will show to be true at the different points in the execution of

GCD, given the assumption that> b > 0 is the initial assertion:

2

procedure gcd(@,b)

(A)Ja>b>0
X:=a
y:=Db
(B.)x=aAy=bAra>b>0
(C.)x>0Ax>y>0AVd(djland|b« djxAd|y)
while y=£ 0
begin
r:=xmody
(D.)x>y>r>0AVd(dland|b < dlyAd]|r)
X:=y
y:=r
(E.=C.)x>0Ax>y>0AVd(dland|b < d|xAd]y)
end

(F.)x>y=0AVvd(dland|b < d|xAdl|y)
(G.) x> 0AxjaAnxbAVvd(djasd|b— d|x)
(H.) x=gcda,b)
We organize the proof into an outline. The items follow the structure of the program; the displayed

formulas show how we gradually establish progressively more powerful mathematical statements
about the program.

1. First we show
A{x:=a)y:=b}B
This is an obvious consequence of assignment and inertia.

2. Then we show
B—-C

by logic. B lets us substituta for x andb for y in C, which makes the inequalities @follow
immediately fromB and gives the universal statement the fordip < p). We conclude
that

A{x:=ay:=Db}C
by putting these two things together.

3. We next show
CAy#0{r:=xmod y}D

This step mixes logical and mathematical reasoning. The key thing is that after we execute
r:=xmodyr =xmodybutx andy are unchanged. That means we still havey > 0.

It also meany > r > 0, by the definition oimod So to showD is true, we only need to
showvd(dland|b < d|yAd|r). So considedy such thatlp|a dg|b. By C, we know that

do|x anddp|y. But we noted earlier that this meadgx mod y Sodg|y A do|r. Conversely,
supposealg|y A do|r. Then agairdg|x becausex = qy+ 1r. So byC, we knowdp|a anddp|b.

This completes the argument.

4. We then show that
D{x:=y;y:=r}E
using assignment and inertia. Now we conclude that

CAYy#0{r:=xmodyx:=y;y:=r}C
by putting these two together (noting tiat E).
5. We can now use the induction principle f@hile loops to get:
C{while...end}CAy=0
That means by sequence

A{x:=ay:=Db;while...endjCAy=0

6. Now we do a last little bit of logic. We kno®@ Ay = 0= F. We need to show — G. We
havex > 0 immediately. Why does|a andx|b? We knowvd(d|xAd|]y — djaAd|b). We
instantiatex for d and recall thayy = 0: x|x A x|0 — Xx|aA x|a. But of course since = 1x
andx = 00, x|x andx|0. Sox|a andx|b. Finally we getvd(d|aA d|b — d|x) by logic from
C, which entails thavd(djaA d|b — d|xAd]y). Thus we knowF — G. But we gave an
argument earlier thad — H:

x> 0AXxlaAx|bAvd(dland|b— d|x) — x=gcda,b)
Putting these observations together gives:
A{x:=ay:=Db;while...end}H

This concludes the proof that the program is correct.

