1. Formalize the following English sentences in propositional logic. Use the key provided.

(a) No shirt – no shoes – no service.
 \(I \): you wear a shirt
 \(O \): you wear shoes
 \(E \): you are served.
 Answer:
 \(\neg I \lor \neg O \rightarrow \neg E \)

(b) The deluxe burger comes with fries and a coke.
 \(B \): you get a deluxe burger.
 \(F \): you get fries.
 \(C \): you get a coke.
 Answer:
 \(B \rightarrow F \land C \)

(c) Delivery is available in New Brunswick for orders of $10 or more.
 \(N \): you order from within New Brunswick.
 \(T \): your order costs at least $10.
 \(D \): we will deliver your order.
 Answer:
 \(N \land T \rightarrow D \)
 Also OK:
 \(D \rightarrow N \land T \)

(d) If you are not satisfied, you get your money back.
 \(S \): you are satisfied.
 \(M \): you get your money back.
 Answer:
 \(\neg S \rightarrow M \)

(e) No refund without a receipt.
 \(M \): you get your money back.
 \(C \): you have a receipt.
 Answer:
 \(\neg C \rightarrow \neg M \)
2. Each item below offers a pair of compound propositions. In each case, say whether the two are logically equivalent. If they are not, give truth values for \(p \), \(q \), and \(r \) where the two compound propositions have different truth values.

(a) \(r \rightarrow (\neg p \lor \neg q) \)
\(\neg(p \land q \land \neg r) \)
Answer: Not equivalent.
Truth table:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(r \rightarrow (\neg p \lor \neg q))</th>
<th>(\neg(p \land q \land \neg r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>*</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

(b) \((p \lor q) \rightarrow (\neg p \lor \neg q) \)
\(p \rightarrow \neg q \)
Answer: Equivalent.
Truth table:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>((p \lor q) \rightarrow (\neg p \lor \neg q))</th>
<th>(p \rightarrow \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

(c) \(p \rightarrow (q \rightarrow r) \)
\(\neg r \rightarrow \neg p \)
Answer: Not equivalent.
Truth table:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(p \rightarrow (q \rightarrow r))</th>
<th>(\neg r \rightarrow \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>*</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>
(d) \((p \rightarrow q) \rightarrow (p \rightarrow r)\)
\(p \rightarrow (q \rightarrow r)\)
Answer: Equivalent.

Truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>p \rightarrow (q \rightarrow r)</th>
<th>\neg r \rightarrow \neg p</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

(e) \(\neg (p \rightarrow q) \rightarrow r\)
\((r \rightarrow p) \rightarrow q\)
Answer: Not equivalent.

Truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>\neg (p \rightarrow q)</th>
<th>r \rightarrow p</th>
<th>(r \rightarrow p) \rightarrow q</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>*</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>*</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>*</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>*</td>
</tr>
</tbody>
</table>
3. Let the domain of discourse consist of all real numbers. Let \(P(x, y) \) mean \(yx^2 = y^3 \). Which of the following propositions are true, and which are false?

(a) \(P(0,0) \)
 Answer: true.

(b) \(P(-1,-1) \rightarrow P(0,1) \)
 Answer: false.

(c) \(P(1,2) \rightarrow P(1,-1) \)
 Answer: true.

(d) \(\forall x P(x,x) \)
 Answer: true.

(e) \(\forall x P(x,-x) \)
 Answer: true.

(f) \(\exists x P(x,2x) \)
 Answer: true.

(g) \(\exists x \lnot P(x,2x) \)
 Answer: true.

(h) \(\exists x \forall y P(x,y) \)
 Answer: false.

(i) \(\exists y \forall x P(x,y) \)
 Answer: true.

(j) \(\forall x \forall y \forall z (P(x,y) \rightarrow P(xz,yz)) \)
 Answer: true.
4. Formalize the following English sentences in predicate logic. Use the key provided. Use the constant \(a \) to represent the store about which these rules are true.

(a) We honor competitors’ coupons.
\[
M(x, y) \colon x \text{ competes with } y.
\]
\[
C(x, y) \colon x \text{ is a coupon for store } y.
\]
\[
H(x, y) \colon x \text{ honors } y.
\]

Answer:
\[
\forall s \forall c(M(s, a) \land C(c, s) \to H(a, c))
\]

(b) None of our pizzas contain any artificial ingredients.
\[
Z(x) \colon x \text{ is a pizza.}
\]
\[
S(x, y) \colon x \text{ sells } y.
\]
\[
A(x) \colon x \text{ is artificial.}
\]
\[
C(x, y) \colon x \text{ contains } y.
\]

Answer:
\[
\neg \exists p \exists i(Z(p) \land S(a, p) \land C(p, i) \land A(i))
\]

(c) Buy one pizza get one free.
\[
P(x, y, z) \colon x \text{ pays } y \text{ } z \text{ dollars.}
\]
\[
G(x, y, o) \colon x \text{ gives } y \text{ object } o.
\]
\[
Z(x) \colon x \text{ is a pizza.}
\]
\[
F(z) \colon z \text{ is the full price for a pizza.}
\]

Answer:
\[
\forall x \forall z(P(x, a, z) \land F(z) \to \exists p \exists q(Z(p) \land Z(q) \land p \neq q \land G(a, x, p) \land G(a, x, q)))
\]

(d) Opened CDs can only be exchanged for another copy of the same title.
\[
C(x) \colon x \text{ is a CD.}
\]
\[
O(x) \colon x \text{ has been opened.}
\]
\[
T(x, t) \colon \text{the title of } x \text{ is } t \text{ (the type of recording).}
\]
\[
E(x, y, o, p) \colon x \text{ gives } y \text{ object } o \text{ and } y \text{ gives } x \text{ object } p \text{ in exchange.}
\]

Answer:
\[
\forall x \forall o \forall p \forall t(E(x, a, o, p) \land C(o) \land O(o) \land T(o, t) \to C(p) \land T(p, t))
\]

(e) Our prices are the lowest.
\[
P(o, x, z) \colon \text{the price of product } o \text{ in store } x \text{ is } z \text{ dollars.}
\]

Answer:
\[
\forall o \forall x \forall y \forall z(P(o, x, z) \land P(o, a, y) \to y \leq z)
\]