TABLE OF CONTENTS

I. Introduction to the Curriculum 1

II. The Courses .. 4

III. Typical Schedules .. 29

IV. Transfer of Credits .. 31

V. Faculty ... 33

Figure 1. Undergraduate Program in Computer Science... 3A

NOTE

The course descriptions in this brochure supersede the description in the Livingston Catalogue for 1972-73. There are a few differences between the descriptions in the two documents and students should plan their program on basis of the present brochure.
I. INTRODUCTION TO THE CURRICULUM

The undergraduate program in computer science is oriented to:

(i) majors in computer science,

(ii) students majoring in other areas (mainly the sciences, mathematics, engineering, and business) who are interested in a working knowledge of computer problem solving, and

(iii) students interested in a general introduction to computers, their range of application, and their impact on society.

A major in computer science is expected to acquire the knowledge and skills needed to hold professional positions in areas of design, implementation and operation of computer systems (hardware and software) and of their applications; to teach computer science topics at the high school and college levels; and to prepare for graduate study in computer science. Courses that cover prerequisites for graduate study in computer science at Rutgers are available in the undergraduate program.

Because of the rapid rate of growth in the field, a student majoring in computer science must acquire the capability to follow research and professional literature in the field, to adapt to changes in methods, languages and systems, to plan and work independently on substantial computer projects, and to communicate effectively with other people in the course of work. As the impact of computers on society is becoming more significant from day to day, a student must prepare to participate intelligently in managerial and social decisions that involve computers. In view of these requirements, our undergraduate program in computer science emphasizes concepts, theories and general methods which underlie applications of computers and which can be used to guide the design of computer systems. The program also stresses independent study, doing active work on computers with specific languages, and participating in advanced seminars.

The structure of the undergraduate curriculum in computer science is summarized diagrammatically in Figure 1. Boxes stand for courses, and lines denote the relation between courses and their prerequisites. With some exceptions, courses with odd numbers are given in the Fall, and even numbered courses are given in the Spring. Students may plan their overall program of study with the help of this diagram.

The location of a course in the diagram roughly indicates its level and type. Introductory courses are at the top of the diagram, and more advanced courses appear lower in the diagram. In our program there are four broad types of courses: mathematical foundations and theory; computers, programming, and system software; applications of computers to numerical problems; and applications to non-numerical problems. In the diagram, courses of the same type appear in a vertical arrangement. The course types that correspond to these arrangements are shown in the top of the diagram. Not each
course can be accurately classified within the four types; the classification should be taken as a rough guide for planning a program of study. More detailed information on courses and prerequisites are given in the course descriptions of the next section.

A student majoring in computer science is expected to take at least fourteen semester courses in the program (the courses 090:119-120 and 198:101 cannot be used towards this count); eleven of the fourteen are required courses and the remaining three can be chosen in accordance with the students specific interests and orientation. In Figure 1 the required courses are shown with darker boxes. Four of them (105, 106, 205 and 206 shown in a column at the left) provide the necessary mathematical concepts and methods for work in computer science; students with insufficient previous mathematical preparation are required to take the introductory two-semester course 090:119-120 before taking any of these four courses. Students may also take 198:101 to gain an acquaintance with problem solving. Three of the required courses (111, 212, and 213 shown at the upper right of Figure 1) are concerned with the fundamentals of computer problem solving and with programming in high level languages (BASIC, FORTRAN, PL/1, SNOBOL, LISP). Four of the required courses (311, 312, 401, and 402 shown in the lower middle of Figure 1) provide the basic concepts and techniques in computer organization, machine language programming, and systems software. The remaining courses that complete the minimal program for the computer science major may be chosen from offerings in data and information processing (214, 321), other advanced computer applications (322, 404, 419, and 432), social implications (431 shown at the extreme bottom right), and computer theory (422). Our present program enables a student to choose up to eight courses in computer science beyond those that are minimally needed for a major. Independent Study (223, 224, 495, and 496) provides an additional opportunity for the student interested in topics and experience not covered in the formal courses. Students will be strongly urged to devote at least one course to independent study or to a seminar. Courses relevant to computer science are also available in the departments of Mathematics (RC, DC), Philosophy (LC), Industrial Engineering (RC), Statistics (RC), and Electrical Engineering (RC).

A student majoring in computer science will be encouraged to develop an overall study plan (in consultation with his advisor) sometime during the first two years in college. The plan would include the student's course requirements for major; courses in computer science beyond the requirements for major, as well as courses in other departments that are relevant to computer science, all chosen so as to enhance the student's professional-educational goals; and courses in other areas in accordance with the student's general interests.

Students majoring in the physical and biological sciences, as well as in mathematics and engineering, will gain a good grasp of computer concepts and a strong competence in the use of computers in their respective fields by taking a sequence of courses in numerical methods and in computer problem solving (211 followed by 322 and/or 404). Skills in the mathematics of discrete structures essential for problem solving in non-numerical problems and modeling of discrete systems may be obtained by taking the sequence of courses 205 and 206. Skills in modeling and computer simulation of continuous systems may be obtained by taking 404 independently. Alternatively, students in these fields may gain a knowledge of computers, and programming which is less extensive, but sufficient for many of their needs, by taking the introductory course 111 or 112.
Students in the social and behavioral sciences, and in the humanities, will receive a strong preparation in the use of computers in their work by taking a sequence of two courses in nonnumerical methods and computer problem solving (111 or 112) followed by 212 or 214 and possibly 321. A less demanding alternative, would be to take the introductory course 111 or 112 only. For students interested in data processing (e.g., management, urban administration, etc.), the recommended sequence is 111, or 112 followed by an introductory course in data processing (214) and the advanced course in information processing methods (321).

Students interested in a general acquaintance with computers and their uses will find the introductory course 112 sufficient for their needs.

Those interested in studying the broad impact of computers in various aspects of scientific, economic and social life should participate in the seminar course 431 after taking at least one computer science course (such as 111 or 112).

Even though the introductory mathematical course (105, 106, 205, 206) are specifically designed for computer science majors, their emphasis on applied problems and on constructive processes, and their articulation with courses in computer problem solving, make them well suited for students majoring in certain areas of biology, psychology, anthropology, economics and urban planning.

Notes concerning Figure 1 (which appears on following page):

--- points to a course from its prerequisite(s).

- - - > points to a course from a recommended previous course.

AND means that all entering arrows are required.

OR means that any entering arrow is acceptable.

M1 satisfactory high school mathematical preparation.

M2 one year of college level mathematics.

M3 no special mathematical background required, knowledge of high school algebra is desirable.

M4 advanced high school mathematical preparation.

B1 at least one computer science course and consent of the instructor.

B2 consent of the instructor.

Δ the course is not offered in 1972-73.

Dark boxes indicate the eleven required courses.
FIGURE I - UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE
MARCH 1972
II. THE COURSES

This section presents a description of each course in the undergraduate program for the year 1972-73. With some exceptions, courses with odd numbers are given during the fall semester and even numbered courses are given in the spring. Descriptions of the courses 090:119-120 which are offered by Academic Foundations are also included here in order to facilitate the planning of programs of study that require satisfactory high school mathematical preparation. Each course description specifies the academic objectives of the course (also, for what students it is intended); the preparation expected of a student taking the course (prerequisites and other required knowledge or experience); the work expected of a student in the course (assignments, examinations, computer projects); an outline of the course; and references (textbooks and articles) that provide a further basis for identifying the subject matter and level of the course.

Prerequisites are to be taken as strong guidelines that should help a student to decide whether to register in a specific course. Normally, students taking a course should satisfy the course prerequisites. However, special cases will be considered individually by the instructor in charge of the course.
090:119 INTRODUCTORY APPLIED MATHEMATICS (4 credits each term)
(to be given in the Fall and Spring)

Instructor: H. Eng & Staff

Objectives: This course is intended for students with insufficient high school mathematical preparation who are interested in pursuing studies in areas that require an applied mathematical background.

Prerequisite: Section 1 - none.
Section 2 - one year of high school algebra

Outline: This course is designed to acquaint students with principles, methods, and procedures for solving problems in elementary applied mathematics. Topics include numbers and sets, variables and open sentences, addition and multiplication of real numbers, solving equations and problems, solving inequalities, operations with polynomials, special products and factoring, operations with fractions, functions, relations and graphs, systems of open sentences in two variables, rational and irrational numbers, quadratic equations and matrices.

Expected Work: Weekly homework assignments and at least four quizzes, plus midterm and final.

090:120 INTRODUCTORY APPLIED MATHEMATICS (4 credits each term)
(To be given in the Fall and Spring)

Instructor: H. Eng & staff

Objectives: Section 1 is intended for students with insufficient high school mathematical preparation who are interested in pursuing studies in the behavioral science areas that require an applied mathematical background.

Section 2 is intended for students with insufficient high school mathematical preparation who are interested in pursuing studies toward a computer science major or in other scientific areas that require an applied mathematical background.

Prerequisites: Two years of high school mathematics or 090:119.

Outline: Section 1: This course is designed to acquaint students with principles, methods and procedures for solving problems in elementary applied mathematics. Topics include sets, linear and polygonographs, linear programming, mathematics of gambling, matrices, non-linear algebraic functions, log functions, sequences and series, mathematics of derivatives and differentiation of algebraic functions. Additional topics are fundamentals of probability and introduction to statistical methods in experimental science.

Section 2: This course is designed to acquaint students with principles, methods and procedures for solving problems in elementary applied mathematics. Topics include sets, inequalities, functions and relations, vectors and matrices, algebraic functions, exponential and logarithmic functions, trigonometric functions, analytic geometry, sequences, series, intuitive differentiation, and intuitive integration.

Expected Work: Weekly homework assignments and at least four quizzes, plus midterm and final.

Freund, John E., STATISTICS A FIRST COURSE, Prentice Hall, 1970

Instructor: K. R. Kaplan

Objectives: To help entering students develop problem-solving skills and aptitudes.

Prerequisites: No special mathematical or computer science prerequisites.

Outline: Through student-computer interaction, by means of a special procedure-oriented programming language, various problems in word and letter-string manipulation, numbers and number sequences, and "teletype geometry", will be formulated and solved. Students will program and debug at the teletype terminal, and will be encouraged to generalize their problem-solving experiences and to try problems of their own design.

Expected Work: Initially, readings and experimental trials with the programming language. Then, continuing sessions at the terminal to solve and extend various problems.

References: Notes and programming workbooks to be distributed.
Instructor: Staff

Objectives: This course is intended to give computer and other science majors a basic introduction to calculus and linear algebra. Computers are used as a vehicle to aid in the instruction by selected problems and examples which the students program during the course. Students are, therefore, recommended to take 198:111 during the Fall semester concurrently with 198:105. A major in computer science is required to take this two-semester course or, alternatively, the two semester calculus sequence and the course in linear algebra offered by the Mathematics Department (RC).

This course is open to non-science majors.

Prerequisites: Grades of at least B (2) in high school algebra, geometry, and intermediate algebra; passing a placement test; or 090:119-120. The ability to add fractions, plug values into formulas, and draw graphs by plotting points must not be in doubt. Trigonometry and analytic geometry are not prerequisites but will help. Students with insufficient background in high school mathematics and problem solving are advised to take 198:101 in preparation for this course. Those who have successfully passed a year of college calculus may not receive credit for 198:105-6 and should take a semester of linear algebra instead. Priority will be given to computer science majors.

Outline: The computer programs studied and written by students in this sequence help deepen and extend their understanding of mathematical concepts and procedures. The programming language used is BASIC, which is easily learned.

FALL SEMESTER (:105): Functions and graphs, limits of a sequence and of a function, the derivative of a function with geometrical interpretation. Derivative of transcendental functions (sinx, cosx, e^x, logx, etc....). Extrema of a function. Introduction to Taylor Series. Vector spaces, systems of linear equations, matrices, solution by elimination.

Expected Work: One 75 minute lecture per week; 125 minutes of discussion periods per week. Midterm and final examinations. Homework and computer program assignments.

(To be later defined)
198:111-112 INTRODUCTION TO COMPUTING Spring & Fall (4,4 credits)

Instructor: J. Cox

Objectives: This course is required for computer science majors and is also suitable for other students who are interested in learning fundamentals of computing. It will provide the computer science major with the necessary background for more advanced computer science courses. Courses 111 and 112 cover essentially the same material. Computer science majors are advised to take 111 in the fall since the computer is used extensively in 105-106 as an aid for teaching mathematical ideas. Non-majors are strongly advised to register for 112 in the spring.

Prerequisites: No special mathematical prerequisites--knowledge of high-school algebra is desirable. Students with insufficient high school background in problem solving are advised to take 198:101 in preparation for this course.

Outline: Algorithms
Interactive programming using the BASIC language
Programming of numerical problems (e.g. simple algebraic problems).
Programming of non-numerical problems (e.g. sorting data)
Block diagram of a computer
Computer simulation
Other programming languages

Expected Work: Students are assigned ten lab programs. The programs are designed to give the student a background in various aspects of what a computer can and cannot do. These programs are written in BASIC, a simple language, which is taught during the course. The programs are written using a Time Sharing System. Each program takes about one hour of terminal time plus about two hours of outside preparation. There will be a midterm and a final examination.

References:
INTRODUCTION TO DISCRETE STRUCTURES (4 credits)

Instructor: R. Orgass

Objectives: This course is required for computer science majors. It is also recommended for students in the biological, behavioral, and social sciences, as well as in urban planning who have a theoretical orientation and are interested in computer methods. The course is designed to introduce students to various topics in mathematics which are useful when considering practical problems in computer science. The main emphasis of the course will be on topics in mathematics, but some attention will be devoted to applications.

Prerequisites: Two semester courses in mathematics at the college level (e.g., 198:105-106 or equivalent) or advanced high school mathematical preparation. The important prerequisite is the ability to work with mathematical concepts.

Outline: The course introduces the student to those fundamental algebraic and logical concepts that are needed for theoretical and advanced practical work in computer science and illustrates applications of these concepts to problems in the field. Topics include set theory, propositional calculus, first-order predicate calculus, algebraic structures including semigroups and groups. Relationships between these structures will be presented, and applications to the study of computer hardware and to algorithms will be discussed.

Expected Work: There will be regular class assignments, two or three hour tests, and a final examination. Students will be expected to do a reasonable amount of independent work.

G. Birkhoff and S. MacLane, A SURVEY OF MODERN ALGEBRA, Macmillan, 1953.

198:206 DISCRETE PROBABILITY THEORY & COMBINATORIAL ANALYSIS

Spring (4 credits)

Instructor: C. V. Srinivasan

Objectives: This course is required for majors in Computer Science. It is also recommended to students in other sciences and in urban planning. The course introduces the fundamental concepts in discrete probability theory, and basic methods in combinatorial analysis.

The principal aim of this course is to develop skills for problem solving and modeling, in combinatorial analysis, and its applications to probability theory. The course is intended as a prerequisite for more advanced courses on applied combinatorial analysis and non-numerical algorithms.

Prerequisites: 198:205 or equivalent and 198:105, 106 or equivalent. No prior knowledge of combinatorial mathematics or probability theory is assumed. Concepts in modern algebra will be introduced in class as necessary. Knowledge of programming will help, but is not essential. Students who like programming would benefit by taking 198:212 in parallel with this course.

Outline: Nature of Probability theory and combinatorial analysis:
Sample space, events; Relations between events and combination of events; Probabilities in discrete sample spaces.

Elements of combinatorial analysis:
Permutations, combinations; Rules of sum and product;
Distributions of distinct and non-distinct objects;
Subpopulations and partitions of finite sets of objects; Application of generating functions to the solution of combinatorial problems

Conditional Probability and Stochastic Independence.
Binomial and Poisson distributions
Random variables
Expectations and moments
Laws of large numbers.

Each of these concepts will be discussed in the context applications in areas relevant to computer science.

Expected Work: There will be weekly assignments of homework. There will be two examinations, mid-term and final.

References: Liu, C. L., INTRODUCTION TO COMBINATORIAL MATHEMATICS, Computer Science Series, McGraw-Hill, 1968 (Optional)

Feller, W., INTRODUCTION TO PROBABILITY THEORY AND ITS APPLICATIONS, Volume I, John Wiley & Sons, (necessary).
Instructor: Staff

Objectives: The course concentrates on the study of high level programming languages and their use in the formulation of algorithms for the solution of numerical problems. It is recommended for students majoring in the sciences, in mathematics and engineering who are seriously interested in computer programming and numerical methods. Students who already have a working knowledge of a high level language such as FORTRAN can take the alternative course 198:213.

Prerequisites: A working knowledge of calculus and linear algebra equivalent to one year of college level mathematics.

Expected Work: Approximately 10 computer problems will be assigned in FORTRAN IV. A mid-term and final examination.

IBM Manual 360 - FORTRAN IV LANGUAGE, Form No. C28-6515

HAMMING, R. W, INTRODUCTION TO APPLIED NUMERICAL ANALYSIS, McGraw Hill Book Co., N. Y. 1971
198:212 NON-NUMERICAL PROBLEMS & COMPUTER PROGRAMMING Spring (4 credits)

Instructor: Staff

Objectives: To explore the application of computer languages to the formulation of algorithms for the solution of non-numerical problems. This is a required course for Computer Science Majors.

Prerequisites: Some programming background including experience with at least one higher level language. This requirement is satisfied by Courses 111 or 211 or both.

Outline: SNOBOL 4 will be introduced.

The course will be built around the study of a series of non-numerical problem types. The formulation of algorithms and their programs for problems including language manipulation (such as text editing), sorting, symbolic simplification and expansion of symbolic mathematical expressions, symbolic differentiation, language analysis and translation. Related problems include generations of samples of a language from its grammar and enumerations of algebraic expressions of a certain kind. Another class of problems are graph manipulations, including shortest path problems such as the traveling salesman problem. Also wiring, layout, and maze problems, graphics (synthesis and analysis of pictorial displays such as charts, cartoons and mechanical drawings), game playing, and theorem proving problems. The common techniques applicable to these problems will be emphasized.

Expected Work: There will be about six computer problems assigned. There will be a mid-term and a final examination.

References: Reference 1 is required. References 2 and 3 are good general reference but are not required.

Instructor: Staff

Objectives: This course concentrates on the use of high level programming languages in the formulation of algorithms for the solution of numerical problems. It is a required course for majors in Computer Science. It is also recommended for student majors in other disciplines interested in numerical application (see also Course 198:211).

Prerequisites: A working knowledge of calculus and linear algebra such as that provided by 198:105-106. Familiarity with at least one high level language such as BASIC or FORTRAN. Students not fulfilling this latter requirement should take the Course 198:211 instead.

Expected Work: Approximately 12 computer problems or homework assignments will be given. A few introductory problems in PL/1. A mid-term and a final examination.

Hamming, R., AN INTRODUCTION TO APPLIED NUMERICAL ANALYSIS, McGraw Hill Book Co., N. Y., 1971
Instructors: Baxendale

Objectives: Recommended for majors in computer science as well as for students in business, social sciences and humanities who are interested in the applications of computers in data processing and in information systems. This course will treat the elementary data processing requirements of information and business oriented computer systems by means of programming practical applications from the fields of business and management.

Prerequisites: 198:111 or 198:112 or equivalent. Students without the prerequisites must obtain the consent of the instructor for admission to the class.

Outline: The course will start with a three week introduction to COBOL programming. Internal data representation, magnetic tape systems, direct-access storage devices, peripheral I/O devices and introduction to software.

Description of a data base and its structure. Concepts of functions, arrays, records, files, trees, lists and list structures.

Fixed length, variable length and mixed records. Updating and addition to records. File processing. Sorting, searching and retrieval from files; sequential, indexed-sequential and direct-access file organizations. Hierarchies of storage. The role of programs and the data base. Report generation. Text processing and editing.

Computer programming of practical applications from business and institutional record keeping areas. Case study-payroll.

Expected Work: About five or six program assignments in data-processing applications with one larger case study, say, payroll. Mid-term and final examinations.

198:223-224 INDEPENDENT STUDY A (Variable credits)

Instructor: Staff (by arrangement)

Objectives: This course is intended for computer science majors who are interested in going deeply into a subject which is not covered comprehensively in a formal course. This course also provides a vehicle by which computer science majors may gain experience in software design and implementation by undertaking a substantial programming project.

Prerequisites: Consent of the instructor (students should obtain and complete an application form at the department office prior to registration for independent study).

Outline: To be arranged.

Expected Work: Details to be arranged with supervising instructor.
Instructors: Staff

Objectives: This course concentrates on the structure of computer systems and on fundamental programming concepts and techniques. It is required for computer science majors. It is also recommended for students majoring in mathematics and engineering who are interested in computer organization, programming schemes and systems software. The first semester is devoted to computer organization and programming techniques; the second introduces system software.

Prerequisites: A course in computer problem solving (198:211, 198:213 but 198:212 or 198:111 will also do).

Outline: Material to be covered in the first semester (311):

1. Organization of a simple computer (e.g., MIX) functional units, registers, memory organization, instruction formats; data representation, addressing techniques, machine language programming.
2. Elementary Logical Design--construction of registers, half-adders, decoders, etc., from simple digital building blocks.
3. IBM System 360 organization and machine language.
4. Symbolic Assembly Language.
5. Classical Data Structures--arrays, lists queues, stacks, strings, and trees.
6. Selected Programming Techniques--searching, sorting, string manipulation, syntactic recognition, etc.
7. Program Segmentation and Linkages, subroutines, coroutines, and functions.

Material to be covered in the second semester (312):

1. Assembly language macro facilities.
2. Operation and Organization of assemblers, loaders and linkage editors.
3. I/O devices and interrupt handling.
4. Elementary discussion of operating systems batch processing, multi-programming, time-sharing.
5. Interpretive routines and simulation.

Expected Work: In the first semester there will be about six computer problems assigned at two-week intervals. There will be mid-term and final exams. Short class quizzes may also be given at appropriate points. Programming will be entirely in S/360 assembly language.
Expected Work: (continued)

In the second semester there will be about four computer problems assigned at two-week intervals. There will also be a required term (programming) project. All programming will be done in assembly language. There will be a mid-term and final examination.

References:

INFORMATION PROCESSING METHODS Spring (4 credits)

Instructor: S. Baxendale

Objectives: Recommended for majors in computer science, as well as for students in social sciences, humanities and business who are interested in applications of computers in data processing and in information systems.

The course will treat the more advanced data processing requirements of information and business oriented computer systems.

Prerequisites: 198:214 or equivalent, or 198:212 and consent of the instructor.

Outline: Advanced techniques in programming data-processing methods. The use of efficient programming practices such as installation programming standards, documentation, pre-compilation, syntax and error checking, modular programming techniques, report generation, editing, decision tables and data management. These concepts will be applied in a large 'thesis' project or programmed case study in inventory control.

Selected problems in programming of management science applications such as inventory optimization methods, PERT and CPM packages.

Properties of languages useful in description of simulation models, Design of models including selection of scope, identification of exogenous and endogenous events, entities, establishment of facilities and queues, synchronization and collection of information. Development and testing of models including queuing models, feedback systems, storage systems, priority systems and flow in complex networks.

Expected Work: COBOL programming and file processing. Homework assignments. Mid-term and final examinations. Large project in record-keeping using modular programming approach.

198:322 NUMERICAL METHODS Spring (4 credits)

Instructor: Staff

Objectives: Recommended for majors in computer science, as well as students in physical and biological sciences, mathematics, and engineering who are interested in applications of computers to numerical problems.

The orientation of this course is toward the use of numerical methods on computers. Some emphasis will also be placed on graphic display of output data.

Prerequisites: 198:211 or 198:213 or equivalent

Outline: The following topics will be introduced in concept, followed by an analysis of their properties in terms of accuracy, computer time, etc.

c) Approximation of functions, Interpolation, differentiation and quadrature.

Grade assessment is dependent on satisfactory completion of programming assignments.

Instructors: Rabinowitz

Objectives: This course concentrates on the structure, formal properties, and software implementation of programming languages. It is required for computer science majors. It is also recommended for other students interested in computer languages and their manipulation.

Prerequisites: 198:311-312 (or 198:301-302), and 198:205 (or equivalent); also experience with one or more higher level languages (e.g., Fortran).

Outline: Material to be (un)covered:

1. ASSEMBLERS & LOADERS: One and two pass assemblers, symbol table organization and searching methods, relocation and linking of subprograms.

2. COMPILERS: Review and comparison of various high-level languages (PL/I, Fortran, Algol), language specification (BNF), top-down and bottom up parsing methods, code generation and optimization, block structure and run time stacks, recursion.

3. MACROS: As extensions to assembly language and as a string processing functions.

4. LIST PROCESSING: Advantages, problems, and techniques for manipulating linked structures, higher level list processing languages.

Expected Work: The orientation will be primarily classroom work and perhaps a few small computer problem assignments. There will be a mid-term and a final examination. A term project involving the implementation of an assembler will be enjoyed by all.

Instructors: Falk

Objectives: This course concentrates on the structure and implementation of operating systems software. Rather than present detailed descriptions of any one specific system, the course will focus on the basic facilities required to construct such systems in general. The course is required for computer science majors. It is also recommended for other students interested in the overall organization of computer operations.

Prerequisites: 198:311-312 (or 198:301-302) and 198:205,206 (or equivalent). It is assumed that the student has at least a passing familiarity with the external characteristics of one operating system.

Outline: Material to be (un)covered:

1. BATCH PROCESSING: Evolution of operating systems, loading, execution, overlap of I/O and computation, buffering, interrupt processing.

2. MULTIPROGRAMMING & MULTIPROCESSING: Time sharing, dynamic memory allocation, scheduling, protection, segmentation, virtual memory, addressing schemes, parallel processing, system modelling and simulation.

3. FILE ORGANIZATION & MANAGEMENT: Structure and accessing of external files, privacy and sharing of data.

Expected Work: Since the course covers many topics, its orientation will be primarily to the classroom with small computer problem assignments, but no term project. There will be a midterm and a final examination.

Instructor: R. Vichnevetsky

Objectives: This course is concentrated on the formulation and derivation of mathematical models of continuous dynamical systems. Their simulation by means of analog and digital computers is analyzed. Strongly recommended for students majoring in computer science, engineering, biological, social and economic sciences and urban planning who are interested in applying modeling and computer simulation methods to their own discipline.

Prerequisites: a) 198:211 or 198:213, or equivalent (i.e., FORTRAN or another high level language, and an introduction to numerical analysis).

b) Calculus including a short introduction to differential equations is recommended, but not mandatory.

c) Consent of the instructor.

Expected Work: Homework and assigned computer programs are designed to give students a feel for the derivation of differential equations describing dynamical phenomena, the evaluation or measurement of parameters, and the methods of computer simulation.

References: a) An introductory text on the qualitative theory of differential equations and their derivation

b) Several papers from the literature on modeling and simulation of urban, economic and biological (etc.) systems.

c) CSMP User's Manual (IBM)

d) Analog Computer Primer (EAI)

References 1, 2 and 4 will be distributed in class.
198:419 NUMERICAL METHODS IN ORDINARY DIFFERENTIAL EQUATIONS
 Fall (3 credits)

(This course will not be offered in 1972-73).

Instructor: F. G. Fender

Objectives: For science and engineering majors who may need to solve
differential equations by computer and others curious about
how a computer can give a solution to a problem in analysis.

Prerequisites: 198:211 or 198:213

Outline: Finite Differences, Solution of Finite Difference Problems,
 Approximation of Differential Equations by Difference
 Equations, Methods of Euler, Milne-Simpson, Adams-
 Bashforth-Moulton, and Runge Kutta. Unusually difficult
 cases. Stability and consistency and their consequences.

Expected Work: About 16 computer solutions and computer experiments.

 Grades will be based on the computer assignments, a
 take-home mid semester examination and a final examination.

References: Henrici, P., DISCRETE VARIABLE METHODS IN ORDINARY
 DIFFERENTIAL EQUATIONS, John Wiley and Sons, Inc.,
198:422 TOPICS IN COMPUTER THEORY Spring (3 credits)

Instructor: R. Orgass

Objectives: The objective of this course is to introduce students to advanced topics in the theory of computation including the theory of computable functions, finite state machines, Turing machines, and switching circuits. This course is strongly recommended for students who are planning to pursue graduate work in computer science.

Prerequisites: 198:205,206 or equivalent; 198:311-312 (or 198:301-302) or equivalent; a course in logic such as Philosophy 332 (Intermediate Logic) is desirable. Students who register for this course should have strong preparation in the prerequisites. Those who have some doubt about their qualifications should meet with the instructor to discuss the course.

Outline: The following topics will be discussed in the course: finite state machines, neural networks, memories of events in finite-state machines, computability, effective procedures, algorithms, Turing machines, Universal Turing machines, limitations of effective computability, relations between Turing machines and recursive functions, Post symbol-manipulation system, Post's normal form theorem, and a survey of very simple bases for computability.

Expected Work: The course will consist primarily of lectures and discussion sessions. Students will have homework assignments regularly. The homework problems will ask the student to expand or elaborate results discussed in class and in the text. Regular completion of homework problems will be essential for learning the subject matter of the course. There will be either a final examination or a term paper; the decision will be made early in the semester.

198:431 SEMINAR IN COMPUTERS AND SOCIETY Fall (3 credits)

Instructor: Staff

Objectives: To provide a forum for the study and discussion of the impact of computers on man and society. For students majoring in computer science, and also for others interested in exploring the social consequences of computer developments.

Prerequisites: At least one computer science course, and consent of the instructor in charge.

Outline: Review of computer applications in various domains--scientific, economic, social. Effects on individuals and organizations; effects on values, education, employment, law, and management. An effort will be made to bring viewpoints from various disciplines (e.g., sociology, anthropology, economics, philosophy). Possible concentration on one area of special interest to participating faculty & students.

Expected Work: Study of reports and papers on selected topics; class presentations and discussions; work on small projects.

References: Selected papers in the literature will be introduced in the course.
198:432 SEMINAR IN NON-NUMERICAL METHODS Spring (3 credits)

Instructor: Staff

Objectives: To provide a view of how non-numerical techniques (as introduced in the course 198:212) may be applied to various areas of current interest in research. Applications to language analysis will not be covered, as these are handled in the course 198:401.

Prerequisites: 198:212 and consent of the instructor in charge.

Outline: A limited number of areas of application will be covered in some depth. Emphasis will be on the selection of methods of representation of the universe of information to be manipulated, and of efficient methods of handling the information. These areas may include (though not be restricted to) theorem proving, game playing, model simulation, graphical manipulation, and analysis of algorithms.

Expected Work: The course will involve a good deal of reading of original papers, and will require each student to make at least one class presentation during the term. Programming work will be a number of small problems rather than a term project. The programming language LISP will be introduced; a knowledge of SNOBOL will be assumed.

Weissman, Clark, LISP 1.5 PRIMER, Dickenson Publishing Co., 1967.
198:495-496 INDEPENDENT STUDY B
(variable credits)

Instructor: Staff (by arrangement)

Objectives: This course is intended mainly for computer science majors who are interested in gaining experience in software design and implementation by undertaking a substantial programming project.

Prerequisites: Consent of instructor (students should obtain and complete an application form at the department office prior to registration for independent study).

Outline: To be arranged.

Expected Work: Details to be arranged with supervising instructor.
III. TYPICAL SCHEDULES

A. Computer Science Majors:

Let us consider two examples of course schedules (only courses offered in our program are shown, as well as relevant courses in Academic Foundations) for majors in computer science. In the first example, the student has satisfactory mathematical background upon entering the program; in the second example the student's mathematical background is insufficient.

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>First Example</th>
<th>Second Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st</td>
<td>105,111</td>
<td>090:119,198:101</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>106,</td>
<td>090:120</td>
</tr>
<tr>
<td>2</td>
<td>1st</td>
<td>205,213</td>
<td>105,111</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>206,212</td>
<td>106,</td>
</tr>
<tr>
<td>3</td>
<td>1st</td>
<td>311,223</td>
<td>205,213,311</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>312,322</td>
<td>206,212,312</td>
</tr>
<tr>
<td>4</td>
<td>1st</td>
<td>401,431</td>
<td>401,495,431</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>402,404</td>
<td>402,496</td>
</tr>
</tbody>
</table>

It is clear that both the student who is well prepared mathematically and the student with an insufficient mathematical background can complete the requirements for the major in four years (even though in the latter case, the first year is devoted to the introductory sequence in applied mathematics (090:119,120) and to the introductory problem solving course 101.) Both students can accommodate in their schedules the fourteen semester courses required for the major, and they could also add more computer science courses in their third and fourth year if they wished to do so.

The following three subsections suggest typical course sequences for students who are not computer science majors. A student should choose a sequence based on his or her background and interest and the level of competence desired in the subject matter. We shall refer to the sequences as PLAN 1, PLAN 2, PLAN 3, etc. In general PLAN (j+1) goes into the material in more depth than PLAN j. Sequences called PLAN 3A and PLAN 3B cover different material but at about the same depth. Clearly, combinations of plans are possible, and they can be formulated to fit the type of material and the depth in which the student is interested.

B. STUDENTS IN THE PHYSICAL AND BIOLOGICAL SCIENCES, MATHEMATICS, AND ENGINEERING

(a) The goal here is to give the student a working knowledge of computer problem solving techniques and numerical methods.

<table>
<thead>
<tr>
<th>PLAN 1</th>
<th>PLAN 2</th>
<th>PLAN 3A</th>
<th>PLAN 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 or 112</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>322</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>404</td>
</tr>
<tr>
<td>PLAN 3B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(b) The goal here is to give the student a background in computer organization, machine language programming, and systems software. (111, 112, 212, 213 or 214 can be substituted for 211 in the plans below).

<table>
<thead>
<tr>
<th>PLAN 1</th>
<th>PLAN 2</th>
<th>PLAN 3A</th>
<th>PLAN 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>311</td>
<td>311</td>
<td>311</td>
<td>311</td>
</tr>
<tr>
<td>312</td>
<td>312</td>
<td>312</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>401</td>
<td>401</td>
<td>401</td>
</tr>
</tbody>
</table>

PLAN 3B

| 211 |
| 311 |
| 312 |
| 402 |

C. STUDENTS IN SOCIAL AND BEHAVIORAL SCIENCES, HUMANITIES, AND BUSINESS

The goal is to give the student a working knowledge of computer problem solving techniques and non-numerical methods.

<table>
<thead>
<tr>
<th>PLAN 1</th>
<th>PLAN 2</th>
<th>PLAN 3</th>
<th>PLAN 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 or 112</td>
<td>111 or 112</td>
<td>111 or 112</td>
<td>111 or 112</td>
</tr>
<tr>
<td>212</td>
<td>214</td>
<td>214</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>321</td>
<td></td>
<td>432</td>
</tr>
</tbody>
</table>

D. STUDENTS INTERESTED IN A GENERAL INTRODUCTION TO COMPUTERS, THEIR USES, AND THEIR SOCIAL IMPACT

(a) For those interested in a general introduction to computers:

<table>
<thead>
<tr>
<th>PLAN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 or 112</td>
</tr>
</tbody>
</table>

(b) For those interested primarily in the social impact of computers:

<table>
<thead>
<tr>
<th>PLAN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 or 112</td>
</tr>
<tr>
<td>431</td>
</tr>
</tbody>
</table>
IV. TRANSFER OF CREDITS

The regulations of Livingston College require that a student must received a grade of B or better in a course in order to receive transfer credit at Livingston College. The Department of Computer Science at Livingston requires that a student complete fourteen Computer Science courses in order to receive a Bachelor's degree with a major in Computer Science. In some cases, it will be possible for a student to receive credit toward this requirement for courses taken at other institutions. In order to receive such credit, the student must request that the Department of Computer Science evaluate his or her transcript. Unless a student requests such an evaluation, transfer credits toward Computer Science major requirements for courses taken at other institutions will not be given.

The evaluation procedure has been designed to minimize the effort required both of students and of faculty members. The basic requirement for this procedure is that it provide sufficient information to enable the faculty to respond.

To request evaluation of transcript, a student should write to:

Undergraduate Examinations and Scholastic Standing Committee
Department of Computer Science
Livingston College
Rutgers University
New Brunswick, N. J. 08903

This may be done either by letter or by using a form provided by the Department of Computer Science. The student's letter should include a list of Livingston Computer Science courses for which he or she wishes to receive credit. To support this claim, the student should cite the courses taken elsewhere, which the student believes are equivalent. Upon completion of the evaluation, the student will receive a letter specifying the courses which have been accepted as counting toward his or her Computer Science major requirements. A copy of this letter will be sent to the Livingston College Registrar.

If at all possible, the student should include with his or her request the following materials:

(1) a transcript of student's record
(2) the catalog of the other institution
(3) a list of texts used in the courses for which credit is claimed.

These materials will be returned to the student. They are required to reduce the time spent searching other records.
In some situations, it is essential for a student to have a fast response to evaluation requests. To accommodate this need, a fast evaluation procedure has been established. In order to use the fast procedure, the student must provide the items (1) to (3) above. A response will be available within two working days.
V. FACULTY

Members of the Computer Science Faculty and their research interests are listed below.

Saul Amarel, Professor, Chairman, and Director of Graduate Programs; D.Eng.Sci., Columbia. Artificial intelligence, computer linguistics, theory of algorithms, information systems.

Stanley Baxendale, Associate Professor and Vice-Chairman; B.S., Leeds. Computer graphics, automatic indexing.

David R. Beaucage, Assistant Professor; Ph.D., State University of New York at Stony Brook. Non-numerical methods, computers in mathematical research.

Christine Beaucage, Adjunct instructor; Ph.D., State University of New York at Stony Brook. Topology of manifolds, mathematics teaching.

Bertram C. Bruce, Assistant Professor; Ph.D., University of Texas. Natural language processing, mathematical logic, artificial intelligence.

John T. Cox, Assistant Professor; M.E.E., New York University. Time sharing, computer-aided instruction, switching theory, automata theory, programming.

William B. Easton, Adjunct Associate Professor; Ph.D., Princeton. Operating systems, time sharing.

William J. H. Fabens, Assistant Professor; Ph.D., University of Wisconsin. Programming languages, artificial intelligence, interactive systems, instructional processes.

Gilbert Falk, assistant Professor; Ph.D., Stanford. Artificial intelligence, visual information processing, data structures, operating systems.

Fred Fender, Professor of Computer Science and Mathematics; Ph.D., University of Pennsylvania. Numerical analysis, computer solution of differential equations.

David Freeman, Professor and Director of University Computing and Information Processing; Ph.D., Cornell University. Operating systems, compiler construction.

Michael D. Grigoriadis, Adjunct Associate Professor; Ph.D., University of Wisconsin. Mathematical programming, operations research; modeling and simulation.

Kenneth R. Kaplan, Visiting Associate Professor; Ph.D., Polytechnic Institute of Brooklyn. Simulation, machine organization, stochastic processes.

Casimir Kulikowski, Assistant Professor; Ph.D., University of Hawaii. Pattern recognition, computers in medicine, decision processes.
Saul Y. Levy, Associate Professor; Ph.D., Yeshiva University. Switching theory, theory of algorithms, computer architecture.

Thomas H. Mott, Jr., Professor and Dean of the Graduate School of Library Service; Ph.D., Yale. Switching theory, programming theory, information systems.

Richard J. Orgass, Associate Professor; Ph.D., Yale. Theory of computation, applications of logic to computer science.

Thomas J. Ostrand, Instructor; M.S., University of Pennsylvania. Automata theory, language theory, software design.

Marvin C. Paull, Professor; B.S., Clarkson. Theory of programming languages, translators, switching theory.

Ivan P. Polonsky, Adjunct Professor; Ph.D., New York University. Programming languages and processors, operating system.

Irving N. Rabinowitz, Professor, and Director of Research, Center for Computer and Information Services; Ph.D., Princeton. Programming languages, language processors, software design.

Chitoor V. Srinivasan, Associate Professor; D.Eng.Sci., Columbia. Description languages, data structures, computer organization, coding theory.

Robert Vichnevetsky, Professor; Ph.D., Brussels University. Computer methods for ordinary and partial differential equations, approximation theory, optimization theory, modeling and simulation.

Edward J. Wilkens, Assistant Professor; Ph.D., University of Pennsylvania. Switching theory, automata theory, operating systems.