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Abstract

Motivated by efficient algorithms for solving combina-
torial and discrete instances of the multi-agent pathfind-
ing problem, this report investigates ways to utilize
such solutions to solve similar problems in the con-
tinuous domain. While a simple discretization of the
space which allows the direct application of combina-
torial algorithms seems like a straightforward solution,
there are additional constraints that such a discretiza-
tion needs to satisfy in order to be able to provide some
form of completeness guarantees in general configura-
tion spaces. This report reviews ideas on how to uti-
lize combinatorial algorithms to solve continuous multi-
agent pathfinding problems. It aims to collect feedback
from the community regarding the importance and the
complexity of this challenge, as well as the appropriate-
ness of the solutions considered here.

Introduction
Multi-agent pathfinding requires the computation of paths
for multiple agents so that they move from a set of start
configurations to goal configurations while avoiding colli-
sions. Efficient and scalable solutions to this problem are rel-
evant in many applications, such as space exploration [Leit-
ner (2009)], warehouse management [Wurman, D’Andrea,
and Mountz (2008)], intelligent transportation [Dresner
and Stone (2008)], assembly or disassembly [Halperin,
Latombe, and Wilson (1998); Sundaram, Remmler, and Am-
ato (2001)], and computer games [Silver (2005b); Nieuwen-
huisen, Kamphuis, and Overmars (2007); Wang and Botea
(2008a); Jansen and Sturtevant (2008b)] to name a few.

In many applications, the domain that the agents are op-
erating in is continuous and the agents may have compli-
cated geometry. In such setups, one needs to reason about
the configuration space of the problem. Figure 1 provides an
related example in a two dimensional workspace. This chal-
lenge is known in the literature as the multi-movers prob-
lem and has been shown to be a hard problem [Hopcroft,
Schwartz, and Sharir (1984); Ratner and Warmuth (1986)].
A discrete version of the multi-agent pathfinding problem
is often considered in the literature, similar to the example
in Figure 2. This discrete variant involves agents operating
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Figure 1: An example solution sequence of a multi-
agent pathfinding instance in a continuous two-dimensional
workspace. Planar rigid bodies need to be rearranged from a
set of initial to a set of goal configurations. The red dots de-
note the goal locations of the rigid bodies. The configuration
space is three dimensional.

in an abstraction, such as a graph or a grid, and may be di-
rectly applicable in some applications. There are various ap-
proaches that have been proposed for this combinatorial ver-
sion of multi-agent path finding with desirable properties.
For instance, a theoretical study, which refers to the prob-
lem as the “pebble motion on a graph”, outlines a decision
algorithm and has shown that in the worst case a n3 number
of moves is sufficient for its solution, where n is the number
of vertices in the underlying graph [Kornhauser, Miller, and
Spirakis (1984)]. The same work has also provided exam-
ples of graphs where n3 number of moves is required. More
recently, concrete algorithms for the solution of the discrete
challenge have been proposed, which return sub-optimal so-
lutions in polynomial time complexity for important sub-
cases of the general discrete challenge [Khorshid, Holte, and
Sturtevant (2011); Luna and Bekris (2011)]. Furthermore,
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Figure 2: The solution to a discrete multi-agent pathfinding
problem.

there are recent complete search-based algorithms, which re-
turn optimal solutions and reduce the computational cost rel-
ative to naive A* search in the composite space of all agents
[Sharon et al. (2011); Standley and Korf (2011)].

Given the desirable properties of efficient algorithms for
discrete multi-agent pathfinding, this report investigates the
following question: how straightforward is it to utilize dis-
crete and combinatorial solutions for multi-agent pathfind-
ing to solve challenges in continuous domains. It may ini-
tially appear that it is quite easy to impose a simple dis-
cretization of the continuous space, such as a grid or a graph,
apply the combinatorial solution on the resulting discretiza-
tion and then translate the result back to the continuous
space. This straightforward approach may directly work in
certain simple cases. Nevertheless, there are additional con-
siderations that need to be addressed in the general case that
complicate the challenge, even if all the agents have the
same geometry, which is a simple variation of the contin-
uous challenge and the starting point for the discussion in
this report. These additional concerns are especially impor-
tant if the objective is to provide some form of complete-
ness guarantee in the continuous case, such as resolution or
probabilistic completeness. The report describes various di-
rections that could be considered towards utilizing efficient
discrete multi-agent pathfinding algorithms to solve contin-
uous problems.

Related Work
Coupled methods for multi-agent pathfinding consider the
agents as a composite system with high dimensionality.
The solution is found by searching the composite space
with complete, optimal planners. For discrete challanges,
this can be solved by involving A* [Hart, Nilsson, and
Raphael (1968)] or one of its variants [Korf (1985)]. Un-
fortunately, the straightforward search approach quickly be-
comes intractable due to its exponential complexity. This
has led to methods that prune the search space while main-
taining desirable guarantees. One recent technique searches
for optimal paths in an iterative deepening manner, showing
that a breadth-first search is feasible [Sharon et al. (2011)].
Another approach modifies state expansion using operator
decomposition and segmenting instances into independent
subproblems [Standley (2010); Standley and Korf (2011)].
There is also work on minimizing the maximum dimension
of independent subproblems [van den Berg et al. (2009)].

Many coupled planners cede optimality, but retain com-
pleteness, and operate on specific graph topologies. Specif-
ically for the discrete challenge, a theoretical study of the

problem refers to is as the “pebble motion on graphs” [Ko-
rnhauser, Miller, and Spirakis (1984)], which can be seen as
the general case of the famous 15-puzzle [Loyd (1959)]. In
this setup pebbles occupy distinct vertices of a given graph
and are moved from one placement to another. A move con-
sists of transferring a pebble to an adjacent unoccupied ver-
tex. It has been shown that a cubic number of moves as a
function of the number of graph vertices is sufficient to solve
this challenge and that the decision problem can be solved
efficiently [Kornhauser, Miller, and Spirakis (1984)].

Many recent methods provide concrete algorithms for
specific instances of discrete multi-agent pathfinding. For
trees, there is a linear time check for the solvability of
an instance [Auletta et al. (1996); Masehian and Nejad
(2009)]. Based on this result, a tree-based technique has
been proposed that employs single-agent primitives [Khor-
shid, Holte, and Sturtevant (2011)]. Similar single-agent
primitives have been employed by a method that is com-
plete on general graphs with two more vertices than agents
and has polynomial complexity [Luna and Bekris (2011)].
Another method considers the minimum spanning tree of the
graph and is complete if there are more leaves in the tree than
agents [Peasgood, Clark, and McPhee (2008)]. There is also
a complete approach specifically for bi-connected graphs
with two more vertices than agents [Surynek (2009)]. For
“slidable” grid-based problems, there is a polynomial time
solution [Wang and Botea (2011)]. In another variant there
is a single pebble and several movable obstacle-pebbles on
the nodes of the graph [Papadimitriou et al. (1994)]. An-
other method segments the graph into subgraphs by plan-
ning high-level operations between subgraphs to reduce the
branching factor [Ryan (2008)]. An unlabeled version of the
pebble problem has also been considered [in Graphs and
Grids (2008)].

In contrast, decoupled techniques compute individual
paths and resolve collisions as they arise. They can solve
problems much faster but they are not guaranteed to be opti-
mal or complete. Certain decoupled methods are based on
heuristic search. One creates a flow network within grid-
worlds [Wang and Botea (2008b); Jansen and Sturtevant
(2008a)] and coordinates the actions where the flows inter-
sect to reduce the number of paths and their intersections.
WHCA* [Silver (2005a); Sturtevant and Buro (2006)] uti-
lizes dynamic prioritization, windowed cooperative search
and a perfect single-agent heuristic to compute scalable so-
lutions. Prioritized planners compute paths sequentially for
different agents in order of priority, where high priority
agents are moving obstacles for the lower priority ones [Erd-
mann and Lozano-Perez (1986)]. The choice of priorities
has a significant impact on solution quality [van den Berg
and Overmars (2005)], and searching the space of priorities
can improve performance [Bennewitz, Burgard, and Thrun
(2002)]. For trees, a hierarchical prioritization-based planner
exists to coordinate sequential actions [Masehian and Nejad
(2010)]. Other decoupled planners employ a plan-merging
scheme to coordinate actions and detect deadlocks [Saha and
Isto (2006)].



Straightforward Approach
A straightforward approach to transfer solutions from the
discrete to the continuous case, where all the agents have
the same geometry, is the following two step procedure:
• Discretize the C-space and acquire a graph-based repre-

sentation G(V,E) of Cfree for a single agent. This means
that the nodes v ∈ V correspond to an agent’s collision-
free configurations, i.e., v ∈ Cfree. Similarly for edges
e ∈ E, where e(s) represents the interpolated configura-
tion between the initial and final configuration of the edge
e for parameter s, it has to be that e(s) ∈ Cfree,∀s ∈ [0, 1].
The approach needs to make sure that the initial and goal
configurations of the agents are connected to the graph G.

• Compute a combinatorial solution for the discrete MAPF
problem on G. If one exists, translate the discrete path on
G to continuous paths in the C-space for all the agents.

The discretization can be achieved either by employing a
regular grid in the C-space, implying that a solution can only
be resolution complete, or by employing sampling, implying
that a solution can only be probabilistically complete. Em-
ploying methods that would return asymptotically optimal
or near-optimal sampling-based roadmaps would be appro-
priate in this context. They bring the hope of returning a
relatively sparse representation that may still allow cover-
ing Cfree, reflecting its connectivity and returning good qual-
ity paths. If a solution is not found by the combinatorial al-
gorithm, either a higher-resolution grid can be computed or
additional sampling can be performed in order to hopefully
return a graph G on which a solution can be found.

While the above approach seems relatively straightfor-
ward, it has to deal with an important challenge. The con-
structed roadmap G guarantees that its vertices and edges are
collision free with the static geometry of the workspace but
not among themselves. This means that if multiple agents
are required to use the same roadmap G there is no guar-
antee that when agent A1 occupies vertex v1 and agent A2

occupies vertex v2, that the two agents will not be colliding.
The same is true for an agent occupying a vertex and an-
other agent traversing an edge of the roadmap or two agents
traversing simultaneously two edges. These concerns can be
addressed if the following constraints are imposed upon the
construction of a roadmap:

a) ∀v1, v2 ∈ V : A(v1) ∩A(v2) = 0,
b) ∀v ∈ V and ∀e ∈ E where v 6= e(0), e(1) and ∀s ∈

[0, 1] : A(v) ∩A(e(s)) = 0 and
c) ∀e1, e2 ∈ E where e1(0), e1(1) 6= e2(0), e2(1) and
∀s1, s2 ∈ [0, 1] : A(v1(s1)) ∩A(v2(s2)) = 0.

The above constraints guarantee that if a multi-agent path
finding solution is computed on the graph G(V,E) where no
two agents occupy simultaneously the same vertex or edge,
then this solution can be translated to continuous collision-
free paths for the agents because a) two agents occupying
two distinct vertices will never be colliding, b) an agent oc-
cupying a vertex will never collide with an agent traversing
an edge and c) two agents traversing two distinct vertices
will never collide. If the discrete multi-agent path finding al-
gorithm computes a sequential solution, i.e., one where only

one agent traverses an edge at a time, then the requirement
c) is not necessary.

A sampling-based algorithm can be easily adapted to sat-
isfy the above expressions. Nevertheless, these requirements
are highly constraining. Very quickly an algorithm will not
be able to add vertices and edges into the roadmap because
they are going to be intersecting with existing features of
the roadmap. Thus, the resulting approach cannot be easily
shown to be probabilistically or resolution complete, as it
is not easy to show that when a solution to the continuous
space exists, a graph can be found that satisfies the above re-
quirements and on which a discrete multi-agent path finding
solution can be computed.

The following discussion will focus on describing related
ideas that could be used in order to address this challenge
in trying to transfer a multi-agent path finding solution from
the discrete to the continuous case.

Ideas
Relocating Roadmap Nodes
As mentioned, some nodes Vc ⊆ V of the roadmap G can be
in collision with each other (A(v1) ∩ A(v2) 6= 0). One idea
is to attempt to move nodes in the set Vc to a different lo-
cation, while trying to maintain the topological properties of
the graph. By moving nodes, the graph’s geometrical prop-
erties are changing. The new location of Vc has to respect
the following rules:

• The new configuration has to be collision free.

• It should not lead into collisions with other nodes.

• It should not lead into collisions with roadmap edges.

Unfortunately there is no guarantee that the algorithm can
find a new location for all the nodes in Vc. It is, however, a
post-processing step that can be applied after the construc-
tion of the roadmap.

Merging Nodes
An alternative solution is to merge two roadmap nodes into
a single one so as to prevent more than one agent from
attempting to occupy them simultaneously. As the number
of intersecting nodes grows, merging these nodes becomes
increasingly problematic. Instead of actually replacing the
nodes by a single one, it is possible to define a super node,
where only one agent is allowed to occupy a configuration in
the super node at a time and there is a path between nodes.
Converting clusters of nodes into one node significantly al-
ters the original topology of the problem. It reduces the num-
ber of nodes on the graph, which can cause the discrete algo-
rithm to fail to find a solution to a solvable problem. A sim-
ple solution to the loss of nodes can be to just add nodes to
the graph. It is not obvious, however, howmany nodes should
be added and where.

Addressing Node/Node and Node/Edge
Interactions
The first case that has to be examined is the interaction be-
tween nodes Vc ⊆ V that are in collision. Assume that two



Figure 3: Example of how robot A can reach its goal GA

robots rA and rB have to stop in adjacent nodes that will
bring them into collision and that the robot rB is the second
one arriving. In this case rA has to move out of its posi-
tion and find a safe spot in a configuration IA, which can be
considered as an intermediate parking spot for that vertex.
Robot rA has to be able to return to its node after rB moves
away. If rA has to move before rB , then rA can first tries to
find a path to its goal. If this fails, then rB has to find an in-
termediate configuration IB that will allow it to come back
to its previous node and traverse the edge to reach its next
destination.

In some cases a robot rA is traversing an edge that is
blocked by robot rB occupying a node. The idea from the
previous paragraph can be extended to this case. Robot rB
has to find an intermediate collision free configuration IB
such that rA can traverse the edge. After rA finishes its move
and as long as the destination node of rA in not in collision
with the previous position of rB , then rB returns to its orig-
inal node. In the case that the current position of rA is in
collision with the last position of rB , rB has to wait in IB
the situation is treated as interaction between two nodes.

In both cases (node/node and node/edge interaction) it is
not guaranteed that the algorithm will find a valid space for
the robot that has to move away from its position (e.g., rA).
Then the algorithm will claim that there is no solution for a
problem, even if one exists.

It is also possible to consider a solution that operates di-
rectly in the continuous space. Consider that a graph G is
computed initially and the discrete algorithm is executed on
this graph. Each robot rAis trying to find a path to the next
node according to the solution specified by the discrete al-
gorithm, using a sampling-based algorithm (e.g., RRT*). For
the example in Fig. 3 the robot rAtries to reach goal GA, but
there are other robots blocking its path. Following the idea
from the discretized version of the algorithm the following
steps can be executed:
• Robot rA tries to reach the next node of its trajectory FA.
• If rB is blocking rA.
• Both of the robots are expanding a tree using operations

in the continuous space (e.g,. using RRT*).

• Try to find a combination of vertices on the RRT* trees so
that:
– Robot rA can go to an intermediate position IA that is

collision free with respect to the current position (CB)
of robot rB .

– Robot rB can go to an intermediate position IB that is
collision free with respect to the intermediate position
(IA) of robot rA.

– Robot rA can return to the previous current position
(CA) from the intermediate position IA that is collision
free with respect to the intermediate position (IB) of
robot rB .

– Robot rA can go to the next step of the trajectory that
was following FA that is collision free with respect to
the intermediate position (IB) of robot rB .

– Robot rB can return to the previous current position
(CB) from the intermediate position IB that is collision
free with respect to the final position (Fi) of robot rA.

• When both robots come up with an intermediate position
(IA, IB) they are trying to move there.

• Robot rC , though, is blocking rA’s way to its intermediate
position IA.
• Robot rA and rC have to find new intermediate positions

so as rCwill free the road to robot rA.
• In Fig.3 (c), rC is moving to its intermediate position IC ,

so that robot rA can move to its intermediate position IA.
Final the robot rB is moving to its intermediate position
IB .
• Now that the robot rB moved away of the position that

was blocking robot rA, robot rA can return to its CA po-
sition and then move to its next position FA. Then the
previous steps have to happen in the opposite direction.
Robot rB is moving back to its CB position and robot rC
is moving back to its CC position (Fig .3 (d)).

Unfortunately, as before, this version cannot guarantee
that it will find a solution in the general case, if one exists.
The problem arises when more than two robots have to be
pushed away from their position so that robot rAcan find a
path to its goal. The algorithm has to be called recursively,
which may result in an exhaustive search for the problem.

Transferring Primitives to the Continuous Space
Rather than use the discrete algorithm to search, in some
cases it is easier to search directly in the continuous space.
The idea behind this approach is to decompose each agent’s
path into segments defined by critical points. A critical point
occurs at the following locations:

• Initial location of the agent
• Final location of the agent
• Before the intersection with another agent
• Right after the intersection with another agent.

The objective is to sequentially move each agent (i.e.,
“pushing agent”) along the critical points until it reaches its
goal. Blocking agents (all agents except the pushing agent)



Figure 4: Agent A executes swap by moving from critical point a
to b.

that occupy a segment between the critical points are forced
to leave. Each agent has its own roadmap. When the push-
ing agent reaches a critical point, it clears the segment cor-
responding to the region between the current critical point
to the next by forcing any agent(s) on that segment to use
their own roadmaps. Any other agent blocking the problem-
atic agent(s) will be also pushed away. When the segment is
cleared, the pushing agent can make progress from one crit-
ical point to the next. If the new critical point does not allow
previously pushed agents to return to their original position,
the pushing agent continues to move from its current criti-
cal point to next while agents that can return do so. Many
of these pushed agents could have been on their goals in the
original configuration or their original configurations were
of importance to other agents that need to return to their
goals. By returning all pushed agents to their original config-
urations, the algorithm attempts to find the solution in finite
time.

An example is shown in Figure 4, in which agent A is
attempting to move from its initial location to its goal while
dealing with intersection with agent B. Agent A has four
critical points along its goal: A’s start/goal, and the point
before and after intersection with agent B. When agent A is
at critical point a, to get to point b it needs to push agent
B from the path segment. Agent B uses its own roadmap to
push away. When agent A reach critical point b, agent B is
able to return to its original location.

In this algorithm, the roadmaps are constructed using
sampling. Each agent keeps track of its own roadmap so as
to allow the algorithm to be utilized with agents of various
sizes. This is the alternative we are currently pursuing as we
consider that it is the most hopeful in providing efficient so-
lutions for the most general setups.
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