
Sparse Roadmap Spanners

Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

Abstract Asymptotically optimal planners, such as PRM⇤, guarantee that solutions
approach optimal as iterations increase. Roadmaps with this property, however, may
grow too large. If optimality is relaxed, asymptotically near-optimal solutions pro-
duce sparser graphs by not including all edges. The idea stems from graph spanner
algorithms, which produce sparse subgraphs that guarantee near-optimal paths. Ex-
isting asymptotically optimal and near-optimal planners, however, include all sam-
pled configurations as roadmap nodes. Consequently, only infinite graphs have the
desired properties. This work proposes an approach that provides the following
asymptotic properties: (a) completeness, (b) near-optimality and (c) the probabil-
ity of adding nodes to the spanner converges to zero as iterations increase. Thus, the
method shows that finite-size data structures can have near-optimality properties.
The method brings together ideas from various planners but deviates from existing
integrations of PRM⇤ with graph spanners. Simulations for rigid bodies show that
the method indeed provides small roadmaps and results in faster query resolution.
The rate of node addition is shown to decrease over time and the quality of solutions
satisfies the theoretical bounds. Smoothing provides a more favorable comparison
against alternatives with regards to path length.

1 Introduction

Motivation: Sampling-based roadmaps preprocess a configuration space (C-
space) to answer multiple path planning queries online [11]. They are practical solu-
tions for challenging, relatively high-dimensional instances. Traditionally, the focus
has been on probabilistically complete methods that return quickly collision-free
paths regardless of their quality. Recent progress has led to asymptotically optimal
planners [9], which, however, need to eventually include all configurations as graph
nodes to provide optimality. Many applications, however, require small roadmaps
that still provide good quality paths. Resource constrained robots can better commu-
nicate, store and query smaller, sparse roadmaps that are computed offline. Interac-
tive games have a small computational budget for path planning and need to quickly
load and query a roadmap online [4]. In dynamic environments, small roadmaps
with multiple good quality paths are advantageous when roadmap edges must be in-
validated on the fly given moving obstacles [8]. This paper describes a method that
simultaneously satisfies many of the above aims. It shows that by relaxing optimality
to near-optimality, it is possible to return a finite-size roadmap that asymptotically
converges to near-optimal solutions.

Sampling-based Roadmaps: The first popular method for building a roadmap
using sampling was the Probabilistic Roadmap Method (PRM) [11]. The algorithm
samples a point in C f ree, the collision-free C, and adds it as a node. It then tries to

Computer Science and Engin., Univ. of Nevada, Reno, NV, e-mail: bekris@cse.unr.edu

1

2 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

connect it to the k-closest neighbors (k-PRM) or those within a d -ball (d -PRM). If
the path is in C f ree, an edge is added. Several variations exist and various adaptations
to the path planning problem have been solved with PRM [2, 23, 21, 25, 24]. This
success motivated work on the study of the probabilistic completeness guarantees
PRM provides [10, 5, 6, 12]. Some variations focus on small roadmaps that pro-
vide coverage, connectivity or good path quality [25]. For instance, visibility-based
roadmaps reject nodes if not needed for coverage or connectivity [23]. The Useful
Cycles approach tests edges for their usefulness in terms of path quality [18] and
combined with the Reachability Roadmap Method returns high clearance paths in
2D and 3D C-spaces [4]. Smoothing can improve solutions and algorithms exist that
produce roadmaps with paths in all homotopic classes and thus deformable to opti-
mal ones [7, 22]. Nevertheless, they build relatively dense roadmaps and smoothing
can be expensive for online query resolution. Hybridization graphs combine multi-
ple solutions into a higher quality one [20].

Roadmaps require a steering method that exactly connects two states, which is
not available for many dynamical systems. Tree-based planners, such as RRT [13]
and Expansive Spaces [6], can solve problems with dynamics and already return
sparse graphs. Nevertheless, they do not provide the preprocessing properties of
roadmaps for multiple queries and for this reason they are not the focus of this
work. Tree-based planners can benefit from roadmaps that return distances between
configurations given C-space obstacles [14]. RRT has been shown to converge to a
suboptimal solution almost certainly [17, 9]. algorithm edges optimal?

d -PRM O(n2) asympt.
k-PRM O(kn) no
PRM

⇤ O(n logn) asympt.
k-PRM

⇤ O(n logn) asympt.
SRS O(an1+ 1

a) asympt. near
IRS O(n logn) asympt. near

IRS2 (m < n) O(m logm) no

Fig. 1 PRM variations and asymptotic
optimality. n,m: # nodes in the roadmap.

Asymptotic Optimality: Recent work has
provided the conditions under which PRM is
asymptotically optimal [9]. Asymptotic opti-
mality implies that as more time is invested in
constructing the roadmap, the quality of solu-
tions improves and converges to optimal at in-
finity. The analysis indicates that the number
of neighbors is the important variable that con-
trols asymptotic optimality [9], as indicated in
Fig. 1. A simple PRM that connects samples to neighbors within a d -ball is asymptot-
ically optimal, but results in a dense roadmap. The roadmap’s density can be reduced
by considering the k-nearest neighbors, but this version is not asymptotically opti-
mal. The PRM⇤ and k-PRM⇤ algorithms rectify this by selecting the minimum num-
ber of neighbors required for asymptotic optimality, which is a logarithmic function
of the number of nodes. Nevertheless, the number of neighbors still grows with each
iteration and the resulting roadmap size is high, as all samples are added as nodes
and it is not clear when to stop sampling.

Asymptotic Near-Optimality: A way to return sparser, good-quality roadmaps
is to relax the optimality guarantees by utilizing graph spanners [19]. Spanners are
subgraphs, where the shortest path between two nodes on the subgraph is no longer
than t times the shortest path on the original graph, and t is the stretch factor of
the spanner. Applying an efficient spanner [3] on the output of k-PRM⇤ resulted
in a Sequential Roadmap Spanner (SRS), which reduces the expected number of

Sparse Roadmap Spanners 3

edges and provides asymptotic near-optimality, i.e., as more time is spent on con-
structing the roadmap, the quality of solutions converges to a value at most t times
the optimal. An incremental integration of spanners with k-PRM⇤ (IRS) has been
experimentally shown to provide even better results [15]. Moreover, the path qual-
ity degradation in roadmap spanners is quite smaller in practice than the theoretical
guarantees. These approaches, however, still include every sample as a roadmap
node. Recent work proposed an extension of IRS, called IRS2, which has a similar
objective to the current paper [16]. IRS2 applies the spanner criterion on nodes, i.e.,
a node is useful if it connects at least two other nodes with a new path that is at least
t times shorter than the best alternative. The method introduces some of the notions
that are important in the current work. Nevertheless, it is not possible to argue about
asymptotic near-optimality by applying the spanner criterion on nodes. It is also not
possible to show that the algorithm will converge to a finite graph.

Contribution: This paper presents the SPArse Roadmap Spanner (SPARS) algo-
rithm, which: (a) is probabilistically complete, (b) can connect any two query points
with a path of length: t · c⇤+4 ·D , (1)
where t and D are input to the algorithm, c⇤ is the cost of the optimum path between
the query points in C f ree of clearance cl, if one exists, and (c) converges to a finite-
size roadmap, i.e., as time increases, the probability of adding new nodes and edges
converges to 0.

SPARS can be seen as a solution to the problem of finding a compact repre-
sentation for answering shortest-path queries in continuous spaces, which has been
proposed as an important challenge for the motion planning community [1]. To the
best of the author’s knowledge, this is the first work that argues for the existence and
provides an algorithm for computing finite data structures with some form of near-
optimality guarantee for continuous path planning. While SPARS provides only
asymptotic properties, i.e., it requires an infinite amount of time to return the fi-
nite data structure, the method allows for a natural stopping criterion inspired by
Visibility PRM [23]. The criterion relates to a probabilistic measure of how close the
roadmap is to a solution that provides the desired properties. This stopping criterion
is not obvious for approaches that include all the samples in the roadmap.

In order to compute the spanner, the method builds an asymptotically optimal
denser graph. C-space samples are included in the spanner if they are useful for cov-
erage or connectivity purposes or if they improve path quality relative to paths on the
dense graph. The algorithm departs from existing roadmap spanners. In particular,
it is based on the identification of boundaries of “visibility” regions of the spanner
nodes through the dense graph nodes. It eventually guarantees that all shortest paths
between boundaries of “visibility” regions on the dense graph can be represented
by paths on the spanner that are at most t times longer, which leads to Eq. 1. The
parameters t and D can control the sparsity of the resulting roadmap.

Simulations with rigid bodies (SE(2) and SE(3)) indicate that the method pro-
vides very small roadmaps and that the rate of nodes added to the spanner decreases
over time, resulting in very efficient online query resolution times. Moreover, the
path solution quality is significantly better than theoretical bounds and close to the
output of asymptotically optimal planners.

4 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

2 Setup and Nomenclature

The C-space abstraction casts a robot’s position and orientation as a point q in
a d-dimensional space. The collision-free part of C is denoted as C f ree. This paper
focuses on the C-spaces of planar and rigid body configurations (SE(2), SE(3)), but
SPARS is applicable if appropriate metric and sampling functions exist.
Definition 1 (The Path Planning Problem). Given the set of free configurations
C f ree ⇢ C, initial and goal points qinit,qgoal 2 C f ree, find a continuous path p 2P =
{r|r : [0,1]! C f ree}, p(0) = qinit and p(1) = qgoal.
Definition 2 (Robust Feasible Paths). A path planning instance (C f ree, qinit , qgoal)
is robustly feasible if there is a cl-robust path that solves it, for a positive clearance
cl > 0. A path p 2P is cl-robust, if p lies entirely in the cl-interior of C f ree.

This work aims towards a planner that provides a compact, finite-size data struc-
ture for answering shortest-path queries in continuous spaces. Towards this objec-
tive, a planner must be able to identify which C-space samples are not needed as
roadmap nodes. The standard, graph-theoretic formulation of spanners does not al-
low for removing nodes. An implicit, exhaustive graph G(V,E) over C f ree can be
defined by taking all the elements of C f ree as nodes and collision free paths between
them as edges. Then, a “roadmap spanner” is a subgraph S(VS ⇢ V,ES ⇢ E) of this
implicit, exhaustive graph of the continuous space with the following properties:
• All nodes in G are connected with a path in C f ree to a node on S (coverage).
• S has as many connected components as G (connectivity).
• All shortest paths on S are no longer than t times the corresponding shortest paths

in G (spanner property).
The properties allow for (a) arbitrary query points to connect to the roadmap, (b)

paths to exist between any query points through S that can be connected in C f ree, and
(c) asymptotic near-optimality for query points that lie on S. If the spanner, however,
does not contain all C f ree points, there is no guarantee regarding path cost. To ac-
count for connecting to and departing from the roadmap, the path quality guarantees
need to be further relaxed.
Definition 3 (Asympt. Near-Optimality with Additive Cost). An algorithm is
asymptotically near-optimal with additive cost if, for a path planning problem (C f ree,
qinit , qgoal) and cost function c : P !R�0 with a cl-robust optimal path of finite cost
c⇤, the probability it will find a path with cost c t ·c⇤+e , for a stretch factor t � 1
and additive error e � 0, converges to 1 as the iterations approach infinity.

This paper shows that finite-size data structures can provide the above property
and presents an algorithm that asymptotically converges to such a data structure. To
describe the algorithm the following definitions will be useful.
Definition 4 (Local Planner). Given q,q0 2 C, a local planner computes a local
path L(q,q0) connecting both configurations q and q0 in the absence of obstacles. A
straight-line between q and q0 in C is often sufficient.
Definition 5 (Distance function). The space C is endowed with a distance function
d(q,q0) that returns distances between configurations in the absence of obstacles.
Definition 6 (Shortest Paths). A cl�robust shortest path in C f ree is denoted as pC.

The shortest path between two configurations computed through the roadmap
spanner GS is denoted as pS.

Sparse Roadmap Spanners 5

3 Algorithm

SPARS builds in parallel two graphs: (a) a “sparse” graph S(VS,ES) with the
desirable properties, returned upon termination, and (b) a “dense” graph D(VD,ED),
which instead of being the exhaustive graph G, corresponds to the output of d -PRM
and asymptotically stores optimal paths. The notion of sparsity in this work deviates
from its standard use in graph theory and is used to denote that graph S contains a
finite number of nodes, while D asymptotically includes all configurations as nodes.

SPARS operates by sampling configurations in C f ree and adding them to D. The
algorithm adaptively selects a subset of these samples as nodes in the roadmap span-
ner S (i.e., VS⇢VD). By construction, there will be no edge in ES that will have length
more than 2 ·D , where D is the visibility range of a spanner node and is provided
as an input parameter to the algorithm. There will also be no edge in ED with length
more than d , the maximum radius for neighborhoods in d -PRM. Typically d << D .
Definition 7 (Representatives). A spanner node v 2 VS will be the representative
rep(q) of sample q 2 VD, if they can be connected with an obstacle-free path of
length less than D and v is the closest to q node on the spanner with this property,
i.e., rep(q) = {v 2 VS so that L(v,q) 2 C f ree, d(v,q) < D and argminv2VS d(v,q)}.
The visibility region of a spanner node v given the set of spanner nodes VS is defined
as the set of collision-free configurations that have v as their representative. Figure
2 (left) offers an illustration of the visibility region notion.
Definition 8 (Interfaces and support). The interface between two spanner nodes v
and v0, i(v,v0), is the shared boundary of their visibility regions as in Figure 2 (right).
A sample q 2 VD supports the interface i(v,v0) of its representative v = rep(q), if
there is a sample q0 2VD so that L(q,q0) 2 ED and rep(q0) = v0, where v0 6= v.
Definition 9 (Midpoint). The midpoint between two spanner nodes v and v0 along
the local path L(v,v0) will be denoted as m(v,v0):

m(v,v0) 2 L(v,v0) and d(v, m(v,v0)) = d(m(v,v0), v0)
If the local path L(v,v0) is obstacle-free, then the midpoint m(v,v0) lies on the inter-
face i(v,v0) between the two spanner nodes.

Fig. 2 (left) Visibility region of the representative vi: the configurations that can be connected to
vi and have it as the closest node. (right) Two neighboring spanner nodes define an interface: the
shared boundary of their visibility regions. q supports the interface i(v,v0), where v is the repre-
sentative of q, if there is a configuration q0 within the d hyper-sphere of q that has a different
representative (rep(q0) = v0 6= v) and L(q,q0) 2 C f ree.

6 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

Algorithm 1: SPARS(C f ree,M, t,D ,d)
1 f ailures 0; VD /0; ED /0; VS /0; ES /0;
2 while failures < M do
3 q Sample(C f ree);
4 Add Node d-PRM(D, q, d);
5 Eq = /0 ; // initialize edges from q to spanner nodes to empty

6 v = /0 ; // v will be q’s representative

7 for v0 2VS do // Find guards that can be connected to q
8 if d(v0,q)< D and L(v0,q) 2 C f ree then
9 Eq Eq[{L(v,q)} ; // add local path

10 if v == /0 or d(v0,q)< d(v,q) then
11 v = v0;
12 if Eq == /0 then // when q not visible from existing guards

13 Add Guard Spanner(VS,ES,q);
14 else if q connects two spanner nodes v1,v2 that were previously disconnected then
15 Add Bridge Spanner(VS,ES,v1,v2,q);
16 else
17 V 0 = /0 ; // V 0: nodes with interface supported by q
18 for all q0 2VD so that L(q,q0) 2 ED do
19 if rep(q0) 6= rep(q) then V 0 V 0 [rep(q0)
20 if V 0! = /0 then
21 for v0 2V 0 do
22 if L(v,v0) 62 ES then
23 Add Pair Spanner(VS,ES,v,v0,q,q0)
24 if q /2VS then
25 for v0 2V 0 do
26 for all v00 2VS,v00 6= v0 so that L(v,v00) 2 Es, L(v0,v00) 62 ES do
27 PS {pS(m(v,v0),m(v,v00))} ; // midpoint paths

28 for all x 2VS,x 6= v,v0,v00: L(x,v),L(x,v00) 2 Es, L(x,v0) 62 ES do
29 PS PS[{pS(m(v,v0),m(v,x))};
30 pS = argmax8p2PS |p| ; // max. length path

31 while q /2VS do
32 for all q00 that support i(v,v00) do
33 pD Shortest Path(D, q, q00);
34 if t · |pD|< |pS| then
35 Add Path Spanner(VS,ES,VD,ED,pD,v,v00);
36 if q /2VS then f ailures++;
37 else f ailures = 0;
38 return (VS,ES);

Algorithm 1 outlines the operation of SPARS. The input includes (i) the maxi-
mum number M of failures to add a node in S, (ii) t, the spanner’s stretch factor,
and (iii) the spanner visibility range D and (iv) the sample visibility range d . The
algorithm initializes the two graphs and sets the number of failed attempts to zero
(line 1). While the failed attempts are fewer than M (line 2), the algorithm sam-
ples obstacle-free configurations q (line 3). Every q is added to the dense graph as a
node and connected with an edge to existing samples q0 2VD so that d(q,q0)< d and
L(q,q0) 2 C f ree (line 4). Then, SPARS identifies the connections Eq 2 C f ree between
the sample q and spanner nodes of distance less than D . Among these nodes, the
representative v = rep(q) is found (lines 5-11).

Sparse Roadmap Spanners 7

Fig. 3 (left) q added as a guard. (middle) q added as a bridge. (right) q,q0 support i(v,v0), which
does not have an edge crossing it. Samples q and q0 are candidates for addition.

Figure 3 describes the first three cases under which SPARS adds a sample q to VS.
If none of the existing spanner nodes can be connected to q, then the sample has to
be added for coverage purposes (lines 12-13). The nodes added for C-space coverage
will be called “guards”. If q can connect two disconnected components, then it is
also a candidate for addition (lines 14-15). The function Add Bridge Spanner

first checks whether v1 and v2 can be connected directly with an edge. If they can,
this edge is added, otherwise q is added and connected to v1 and v2. If a direct
edge is added, its maximum length is 2 ·D . Note that the previous method IRS2

employs this two ways of inserting samples into the spanner and also accepts nodes
if they introduce a “useful cycle”, i.e., if they have two neighbors v1 and v2 so that
t · (d(v1,q)+d(q,v2))< pS(v1,v2).

Beyond this point, the algorithm adds samples in VS only if they support an inter-
face. The algorithm detects if q has neighbors in D with a different representative, in
which case, q lies on an interface (lines 17-19). If the representatives v and v0 of q
and q0 do not share an edge, then q and q0 are candidates for addition (lines 21-23).
The objective is to guarantee that every two spanner nodes that share an interface
will also share an edge in ES. This is handled by function Add Pair Spanner

(Algorithm 2), which again first attempts to connect v and v0 directly. If this is pos-
sible, the edge is added and no new node or interface is introduced in S. If L(v,v0)
is not collision-free, then Add Pair Spanner will attempt to connect v and v0

through mid = m(q,q0). If this is not possible, then both q and q0 are added to S,
and connected appropriately to their neighbors. SPARS proceeds to check whether
q reveals paths that are much shorter than spanner paths (lines 24-35).

Algorithm 2: Add Pair Spanner (S,D,v,v0,q,q0)
1 mid m(q,q0);
2 if L(v,v0) 2 C f ree then
3 ES ES[{L(v,v0)};
4 else if L(v,mid) 2 C f ree and L(v0,mid) 2 C f ree then
5 VS VS[{mid};
6 ES ES[{L(v,mid),L(v0,mid)};
7 Reduce Interfaces(S,D,mid);
8 else
9 VS VS[{q,q0};

10 ES ES[{L(v,q),L(q,q0),L(q0,v0)};
11 Reduce Interfaces(S,D,q);
12 Reduce Interfaces(S,D,q0);

8 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

Fig. 4 q,q0 support i(v,v0), while q00 sup-
ports i(v,v00). If path pD(q,q00) is shorter
than t times the length of spanner paths,
then samples along pD(q,q00) are candidates
for addition.

For all interfaces i(v,v0) that q supports
(line 25), the algorithm considers neighbors
v00 of v, so that v00 is not linked to v0 (line
26). Figure 4 gives an example. For such
a case, the algorithm computes the spanner
path pS(m(v,v0),m(v,v00)) (line 27) and sim-
ilar spanner paths between v and neighbors
x of v that do not share an edge with v0 (lines
28-29). Among all of them, the algorithm
stores the longest path (line 30). The algo-
rithm aims to guarantee that all these span-
ner paths are less than t times longer than
the shortest paths between samples along
i(v,v0) and i(v,v00) (lines 31-35).

Algorithm 3: Add Path Spanner (VS,ES,VD,ED,p,v,v00)
1 prior v;
2 for q 2 p do
3 VS VS [{q};
4 ES ES [{L(prior,q)};
5 prior q;
6 ES ES [{L(prior,v00)};
7 for q 2 p do
8 Reduce Interfaces (S,D,q);

The algorithm computes the shortest path between q, which supports i(v,v0), and
all samples that support i(v,v00) and have v as their representative (lines 31-35). If
the shortest path pD(q,q00) in D is shorter than t times the length of the longest cor-
responding spanner path then the algorithm considers the samples along pD(q,q00)
for addition (lines 34-35). This is accomplished by function Add Path Spanner

(Algorithm 3). The final step in SPARS is to make sure that if q has not been added
to the spanner, that the parameter f ailures is increased (lines 36-37). An efficient
implementation of Add Path Spanner would first try to directly connect v with
v00, and it would also try to smooth the final path added to S.

Algorithm 4: Reduce Interfaces (S,D,v)
1 for v0 2VS s.t. d(v,v0)< 2 ·D do
2 if L(v,v0) /2 ES then
3 for (q,q0) 2VD do
4 if d(q,m(v,v0))< d and d(q0,m(v,v0))< d then
5 if rep(q) 6= rep(q0) then
6 if L(v,rep(q0)) 2 C f ree then
7 ES ES[{L(v,rep(q0))};

The method Reduce Interfaces is called by all functions that add nodes to
VS. It aims to directly connect vertices which share an interface but not an edge using
the local planner. Doing so prevents the algorithm from needing to add samples q
and q0 that support this interface.

Sparse Roadmap Spanners 9

4 Analysis

The existence of a finite set of nodes that achieve even coverage depends on
properties of C f ree. Such a finite set may not always exist. This work assumes that
the C-space is expansive, similar to related literature [5, 6].
Definition 10 (Lookout). The lookout of a set Q is the subset of configurations q in
Q, such that the measure of what is visible from q outside of Q is greater than some
fraction of the measure of the part of the free space outside of Q. More formally:

LOOKOUTb (Q) = {q 2 Q | µ(V (Q)\Q)� b µ(C0f ree \Q)}
where C0f ree is a C f ree connected component and V (Q) is the visibility of set Q.

Definition 11 (e , a , b -expansiveness). A space is expansive if it satisfies:
• 8 q 2 C0f ree, where µ(V (q))� eµ(C f ree)
• 8 Q✓ C0f ree, where µ(LOOKOUTb (Q))� aµ(Q)

To provide coverage, it has to be that the resulting spanner allows every collision-
free configuration to be connected with a spanner node through a collision-free path.
Theorem 1 (Coverage). Upon termination of SPARS and with probability 1� 1

M ,
the following is true, 8 q 2 C f ree : 9 v 2VS so that L(q,v) 2 C f ree.

The detailed argument to support the above statement can be found in the work
that presented the Visibility PRM [23] as SPARS is following a similar approach
regarding C-space coverage and the stopping criterion. It also relates to the property
of e-goodness that expansive spaces provide [6]. At a high level, each new guard
inserted to S increases the coverage of C f ree and the probability of generating con-
figurations in non-covered regions decreases over iterations. The algorithm is then
guaranteed to terminate for any finite input value M. When it stops, a probabilis-
tic estimation of the percentage of free space not covered by spanner nodes is 1

M ,
given uniform sampling. This means that future attempts to connect configurations
to spanner nodes will succeed with probability (1� 1

M). Consequently, as M goes to
infinity, the resulting graph covers the entire space. This is a conservative estimate,
since the algorithm assumes an artificial visibility range limit D for spanner nodes.
The work on Visibility PRMs has shown that even for relatively complicated prob-
lems in SE(3), a relatively small number of guards is needed to probabilistically
cover the space. Connectivity properties of the resulting sparse roadmap spanner
can be argued in a similar manner.
Theorem 2 (Connectivity). Upon termination of SPARS and with probability 1
as M goes to infinity, for every pair of nodes v,v0 2 VS that are connected with a
collision-free path in C f ree, there is a path pS(v,v0) that connects them on S.

The above property arises from lines 14-15 of SPARS. The algorithm adds an
edge or a node every time it detects there is a way to connect two disconnected
components. The probability of sampling a configuration that will connect such dis-
connected components of the graph depends on the environment. Narrow passages
will make this connection more challenging. The probability goes to 1, however,
as the value of M goes to infinity, since every configuration will be eventually sam-
pled. The combination of the last two theorems provides probabilistic completeness,
at least when the algorithm samples configurations q in a uniform way.

10 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

Regarding path quality, using d -PRM, the approach is able to construct a dense
graph that provide asymptotic optimality [9]. Thus, the following lemma holds.
Lemma 1 (Asymp. Optimality of D). Upon termination of SPARS and with prob-
ability 1 as M! •, for every cl�robust optimal path pC(q,q0), there is a collision-
free path on the dense graph pD(q,q0), so that: |pD(q,q0)|! |pC(q,q0)|.

Thus, if the length of spanner paths is bounded relative to dense paths, they will
be asymptotically bounded relative to optimal C-space paths.
Lemma 2 (Coverage of Optimal Paths by S). Consider the shortest dense path
pD(q0,qm). As M goes to infinity, the probability of having a sequence of guard
nodes U = (v1, . . . ,vn) with the following properties goes to 1:
• Each q along pD(q0,qm) belongs to the visibility region of a spanner node.
• v1 is the representative of q0, v1 = rep(q0) and similarly vn = rep(qm).
• All the paths L(vi,vi+1) belong to the set ES of the sparse roadmap spanner.

Proof. Fig. 5 (left) illustrates the first property, which is a direct outcome of the
coverage theorem. The second point holds without loss of generality. The following
discussion focuses on the validity of the last point and relates to Fig. 5 (middle).
Consider q j along pD(q0,qm) that supports i(vi,vi+1). With probability 1 as M!•,
samples have been generated in the cl

2 neighborhood of q j, which is guaranteed to
be collision-free. Consider two samples in the cl

2 -ball centered at q j: (a) qi
j with

spanner node vi as its representative and (b) qi+1
j with vi+1 as its representative.

To guarantee the algorithm will produce such samples, it has to be that the set
of such configurations has non-zero measure. The region from which the sample
qi

j must be generated from is the intersection of (a) the volume of visibility paths
from vi to the optimum path pD and (b) the cl

2 -ball centered at q j, which has positive
measure given expansiveness [6]. An expansive space can be partitioned so that
the cl

2 -ball is one partition of the space. Expansiveness states that every subset of
both partitions must have visibility of the other with positive measure. It is already
true that the local path L(vi,q j) is collision-free and contributes towards the lookout
of the partition containing vi. From the above observations, a sample qi

j will be
generated and similarly for qi+1

j .
The local path L(qi

j,q
i+1
j) must be collision-free. Furthermore, for d > 0 there are

qi
j and qi+1

j for which d(qi
j,q

i+1
j) < d . Then, the algorithm would have added the

edge L(qi
i,q

i+1
i) in ED. There are two cases at this point. Either vi and vi+1 are con-

nected as desired, or the representatives are not connected. Assume vi and vi+1 are
not connected. Then all the requirements of the lines 17-23 of the algorithm are sat-
isfied: (i) qi

j,q
i+1
j 2VD and L(qi

j,q
i+1
j)2ED, (ii) rep(qi

j) = vi 6= vi+1 = rep(qi+1
j) (iii)

L(vi,vi+1) 62 ES. Thus, Add Pair Spanner would have been called. The func-
tion would either introduce the edge L(vi,vi+1) or it would add the samples qi

j,q
i+1
j

to S together with the edges L(vi,qi
j), L(q

i
j,q

i+1
j), L(qi+1

j ,vi+1). This means that
(v1, . . . ,vi,vi+1, . . . ,vn) can be replaced by (v1, . . . ,vi,qi

j,q
i+1
j ,vi+1, . . . ,vn), which

still covers the dense path pD(q0,qm). In this case, all the nodes between vi and vi+1
are pairwise connected. Thus, if an edge doesn’t exist, a new sequence can always
be created where all the guards are pairwise connected. ut

Sparse Roadmap Spanners 11

Fig. 5 (left) For every pD(q0,qm), there is a sequence of VS nodes {v1, . . . ,vn} so that every q along
the path is “visible” by at least one vi. For each (vi,vi+1) there is an edge L(vi,vi+1) in ES. (middle)
If there is no edge L(vi,vi+1), the samples qi

i and qi+1
i would have been added to S. (right) The

spanner path pS(q0,q5) can be split into: {Mq0 ,M1,M2,M3,Mq5}. Each Mi is a path of the form
pS(m(vi,vi+1),m(vi+1,vi+2))}. The first and last segments connect q0 and q5 to the spanner path.

A solution path pS(q0,qm) computed through the spanner will correspond to
the concatenation of L(q0,v1) and L(vn,qm) with local paths L(vi,v j) along the
sequence U = (v1, . . . ,vn). Note that not all consecutive guard edges of the type
L(vi,vi+1) need to be part of the shortest spanner path, as there can be short-
cuts along U . Then, the path on the spanner can be decomposed into segments
Mi = pS(m(vi�1,vi),m(vi,vi+1))), which start at a midpoint between two spanner
nodes and stop at another midpoint. There are also the following special segments:
Mq0 = (L(q0,v1),L(v1,m(v1,v2))) and Mqm = (L(m(vn�1,vn),vn),L(vn,qm)). These
segments connect the start or the final configuration with spanner midpoints. Figure
5 (right) provides an illustration. Overall: pS(q0,qm)⌘ (Mq0 ,M1, . . . ,Mk,Mqm).
Lemma 3 (Connection Cost). The length of Mq0 and Mqm of a path between con-
figurations q0, qm computed through the spanner is bounded by: 4D .

Proof. Consider the segment Mq0 . The length of L(q0,v1) cannot be longer than
D because v1 is the representative of q0. Similarly, the distance between v1 and
m(v1,v2) cannot be more than D , since m(v1,v2) is the midpoint between two span-
ner nodes that share an edge. Overall |Mq0 | <

4·D
2 . The same bound can be shown

for the segment Mqm . Consequently: |Mq0 |+ |Mqm |< 4 ·D . ut
Lemma 4 (Spanner Property). Segments Mi have length bounded by t · |pD(qi�1,qi)|,
where qi lies at the intersection of pD(q0,qm) with the interface i(vi,vi+1).

Proof. The arguments presented here correspond to Fig. 6. Given lemma 2, the
edges L(vi�1,vi) and L(vi,vi+1) must belong to the set ES, as the algorithm ensures
that all interfaces will eventually have edges connecting the vertices inducing them.
Assume the true optimal path goes through the visibility region of vertex vi on se-
quence U . There are two cases to be considered: (a) there is no edge L(vi�1,vi+1) in
ES (Fig. 6 (left)) or (b) there is such an edge (Fig. 6 (right)).

To ensure that the spanner property is upheld in the first case, it is sufficient
that the path on S from m(vi�1,vi) to m(vi,vi+1) is shorter than t times the length
of the shortest dense paths between interfaces i(vi�1,vi) and i(vi,vi+1). Lines 24-
35 of SPARS, however, ensure that this property is true. When the newly sampled
configuration q, is on an interface i(v,v0), the algorithm will search for paths from
v0 to all v00 where L(v0,v00) /2 ES. The equivalent of v in Fig. 6 (left) is vi, v0 would be
vi+1 and v00 would be vi�1 or vice verca.

12 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

Fig. 6 (left) The optimal path between qi�1 and qi is represented by the segment Mi on
the spanner. The algorithm checks whether the length of Mi is less than t · |pD(qi�1,qi)|.
(right) Nodes ui�1 and ui+1 are connected with an edge in this case. Thus, the spanner path
will not contain the node ui. Nevertheless, the algorithm checks whether the spanner path
[m(ui�2,ui�1),ui�1], [ui�1,m(ui�1,ui+1)] is shorter than t times the shortest dense path between
the interfaces i(ui�2,ui�1) and i(ui�1,ui+1). The same is true for i(ui�1,ui+1) and i(ui+1,ui+2).

In the second case, the algorithm will not check the interface i(vi�1,vi) and
i(vi,vi+1), because the nodes vi�1 and vi+1 share an edge. Nevertheless, the algo-
rithm considers additional spanner paths when it compares against the length of
dense paths. In particular, the algorithm will check whether the spanner path from
m(vi�2,vi�1) to m(vi�1,vi+1) is shorter than t times the length of the shortest dense
paths between the interfaces i(vi�2,vi�1) and i(vi�1,vi). Notice the difference in
the second vertex of the second midpoint and the second interface. In this case,
node vi�1 in Fig. 6 (right) is equivalent to node v in lines 24-35 of SPARS, vi�2 is
equivalent to node v0, vi is equivalent to v00 and vi+1 is equivalent to node x. The
algorithm will also provide the same guarantee for the spanner path m(vi�1,vi+1) to
m(vi+1,vi+2) and overall: |pS(m(vi�2,vi�1),m(vi+1,vi+2))| < t · (|pD(qi�2,qi�1)|+
|pD(qi,qi+1)| < t · (|pD(qi�2,qi�1)|+ |pD(qi�1,qi)|+ |pD(qi,qi+1)|) and the spanner
property is still satisfied. If the spanner property is violated, SPARS will call func-
tion Add Path Spanner, which will either directly connect the corresponding
vertices or add the dense path into the spanner graph. ut
Theorem 3 (Asympt. Near-Optimality with Additive Cost). Upon termination of
SPARS, as M! • and 8q0,qm 2 C f ree: |pS(q0,qm)|< t · |pD(q0,qm)|+4 ·D .

Proof. Lemma 2 provides the existence of a sequence U of spanner nodes that can
be used to solve path planning queries for any q0,qm (i.e., it is possible to connect q0
and qm to the sequence U , and all the nodes in the sequence are pairwise connected).
The combination of lemmas 3 and 4 indicates that the solution path pS(q0,qm) com-
puted through this sequence has length that is bounded relative to the length of the
dense path |pS(q0,qm)|< t · |pD(q0,qm)|+4 ·D , where the additive cost arrises from
the cost of connecting the query points to the spanner nodes. Lemma 1 indicates that
the paths computed through the dense graph converge asymptotically to the optimal
ones pS(q0,qn). The combination of all these lemmas proves this theorem.ut

An important issue is whether SPARS adds an infinite number of nodes to S in
order to provide the above path quality properties.
Theorem 4 (Finiteness). As the number of iterations goes to infinity, the probability
of SPARS adding nodes to S goes to zero.

Sparse Roadmap Spanners 13

Proof. There are four ways with which SPARS may add nodes in the spanner S and
is necessary to show that the probability of adding each type of node goes to zero.

Nodes for coverage are added when a sample q lies outside the visibility range
of all existing nodes in VS. Theorem 1 already argues that the probability of adding
guards diminishes to zero as the number of iterations increases.

Nodes for connectivity are added when a sample q connects two disconnected
components. Eventually, enough nodes for ensuring coverage will be added in S.
Given the number of nodes n at that point, the number of samples that can connect
disconnected components is finite.

Nodes for ensuring interfaces have edges are added when a sample q has a
neighbor q0 in D and their representatives v and v0 do not share an edge. Assum-
ing coverage and connectivity has been ensured, it is possible there are interfaces
without an edge. In the general case, when a node is added to S, multiple new inter-
faces are defined. But the algorithm employs the function Reduce Interfaces,
which attempts to connect a new node to all nodes with which it shares an interface.
There are three cases for two neighboring nodes: (i) The interface lies outside C f ree
and there is no need to add an edge. (ii) L(v,v0) lies within C f ree and the edge can
be immediately added. (iii) L(v,v0) is not within C f ree, but there exists a portion of
the interface in C f ree. In this case, new nodes need to be added, which, however,
will also add new interfaces, which need to be connected by an edge. Nevertheless,
the newly generated interfaces will eventually have to fall into case (i) or case (ii)
if the C-space is nicely behaved. Otherwise, it has to be that every time a node is
added, there will exist an obstacle which partially covers the local path to neighbors
with which the node shares an interface. Overall, all interfaces will be eventually
connected with an edge, so the probability of adding nodes for this reason goes to 0.

Nodes for ensuring path quality are added when a sample q supports an inter-
face and reveals a path in D that is significantly shorter than the corresponding path
in S. SPARS always adds the minimal amount of nodes possible while ensuring that
the path quality properties of the algorithm hold. When adding a dense path to S,
SPARSwill first try to smooth this path. In some cases, the path cannot be smoothed,
which will result in the addition of nodes to S. The addition of new nodes could po-
tentially always create new visibility regions where a dense path could be found
that is sufficiently shorter than the spanner paths. Eventually, however, the spanner
nodes which the algorithm attempts to connect will be within cl of each other and
it would be guaranteed that L(v,v0) is collision-free and the nodes can be connected
directly. Therefore, SPARS will eventually stop adding nodes in this fashion.

5 Evaluation

5.1 Implementation Details and Setup

The algorithm was implemented in a simulation software written in C++. To im-
prove space efficiency, information was kept to a minimum on the dense graph’s
nodes and edges. Dense nodes take up approximately 40 bytes of memory in SE(2)
examples and 72 bytes in SE(3) examples. Sparse nodes use a larger amount of
memory, as they retain a lists of all the nodes in the dense graph which they repre-

14 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

Fig. 7 Environments for testing (left to right): SE(2): 2D Maze, Teeth, SE(3): 3D Hole and Many
Holes. The 2D Maze tests performance for constrained spaces, while the Teeth environment tests
performance in large, open spaces. The output roadmap is visualized for the SE(2) case.

sent, introducing a cost of 4 bytes per dense node. All edges use approximately 12
bytes of memory. The implementation performed several optimizations compared
to the algorithm described. In order to speed up convergence, connections are at-
tempted to neighbors of newly added sparse nodes in the spanner. The neighbors
considered are all within 2⇤D distance. It often happens that the algorithm will not
be able to quickly identify that two spanner nodes share an interface, as not enough
samples will be present in the dense graph D to correctly identify the interfaces. Fur-
thermore, whenever paths are added to the spanner, the algorithm always attempts to
directly connect points, and if it cannot, it will try smoothing the paths. For nearest
neighbors queries, kd-trees were used. Nevertheless, it is often much more practi-
cal to consider the neighbors of nodes already in the spanner or the graph and then
prune them according to their distance to the selected node. This technique was used
heavily, especially for querying the dense graph.

Experiments were run in four environments in SE(2) and SE(3), as shown in
Figure 7 for kinematic rigid bodies. The 2D Maze used a disk system, while the
Teeth environment used a ‘Z’ shaped body. For both cases in SE(3), a variation
of the ‘Z’ robot was used which has one of its legs coming off in an orthogonal
direction to the other leg. Runs in SE(2) were tested with M = 4000, t = 3, and
D = 20, while runs in SE(3) were tested with M = 1400, t = 3, and D = 25. All
runs were terminated if the stopping criterion was not satisfied after 60 minutes.

5.2 Results and Comparison

SPARS was compared against asymptotically optimal d -PRM and near-optimal
planners IRS2. The algorithms were compared in terms of path quality, query res-
olution time, and number of nodes and edges in the final roadmaps. Results shown
for d -PRM were extracted from the dense graph D constructed by the SPARS algo-
rithm. In this way, the stopping criterion for d -PRM relates to the stopping condition
of SPARS. Figure 8 shows an overview of the algorithms’ performance.

SPARSis the best alternative in terms of aggressively pruning the number of
nodes in the final roadmap and is able to retain many-orders of magnitude smaller
roadmaps than d -PRM. The related IRS2 method retains slightly more nodes than
SPARS but actually returns fewer edges. Nevertheless, given that nodes have higher
space requirements relative to edges, the overall space requirements of SPARS are
more limited than IRS2. This had a significant effect on query resolution times
which were significantly shorter for SPARS relative to d -PRM. In terms of path
length, the asymptotically near-optimal algorithms were able to return solutions

Sparse Roadmap Spanners 15

Fig. 8 A comparison of various aspects of the algorithms. (upper left) The number of nodes in
the final roadmaps. (upper right) The number of edges in each roadmap. (lower left) Path length
for SPARS and IRS2 as a percentage of paths from d -PRM. (lower right) Average query resolution
time for 100 queries.

which were very close to those computed by d -PRM. Note that the part of d -PRM suf-
fers from the side-effect of having multiple nodes along the solution path. Smooth-
ing the final paths results in comparable path lengths between the various methods.

6 Discussion

This paper describes the first approach, to the best of the author’s knowledge,
that provides a finite size data structure, which can be used to answer path queries
in continuous spaces with near-optimality guarantees. Simulations indicate that the
resulting graph is many of orders sparser (i.e., it has fewer nodes and edges) than
graphs with asymptotic optimality guarantees. This results in significantly shorter
query resolution times. The quality of paths computed on the sparse roadmap span-
ner is shown to be in practise significantly better than the theoretical guarantees.

Future research will address the dependency of the current approach to the input
parameters, such as the visibility ranges D , d and the maximum allowed number of
failures M. An interesting question is whether the proposed method can discover the
important homotopic classes in a C-space and how does it compare against methods
that aim to identify homotopic classes [7, 22]. It is also important to consider alter-
native methods that do not need to store during the construction of the spanner the
entire graph returned by the asymptotically optimal planner. Such a development
could reduce the space and time requirements of the spanner’s construction. In a
similar direction, it will be helpful to introduce steps that improve computational
efficiency, such as tools for reducing the cost of A* searches on the dense graph or
the cost of nearest-neighbor queries.

16 Andrew Dobson, Athanasios Krontiris and Kostas E. Bekris

Acknowledgements Work by the authors has been supported by NSF CNS 0932423. Any con-
clusions expressed here are of the authors and do not reflect the views of the sponsors.

References
[1] Agarwal, P.: Compact Representations for Shortest-Path Queries (2011). Appeared at the

IROS 2012 Workshop on Progress and Open Problems in Motion Planning
[2] Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.: OBPRM: An Obstacle-based

PRM for 3D Workspaces. In: WAFR, pp. 155–168 (1998)
[3] Baswana, S., Sen, S.: A Simple and Linear Time Randomized Algorithm for Computing

Spanners in Weighted Graphs. Random Structures and Algorithms 30(4), 532–563 (2007)
[4] Geraerts, R., Overmars, M.H.: Creating High-Quality Roadmaps for Motion Planning in Vir-

tual Environments. In: IROS, pp. 4355–4361. Beijing, China (2006)
[5] Hsu, D., Kavraki, L., Latombe, J.C., Motwani, R., Sorkin, S.: On Finding Narrow Passages

with Probabilistic Roadmap Planners. In: WAFR. Houston, TX (1998)
[6] Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized Kinodynamic Motion Planning

with Moving Obstacles. IJRR 21(3), 233–255 (2002)
[7] Jaillet, L., Simeon, T.: Path Deformation Roadmaps. In: WAFR. New York City, NY (2006)
[8] Kallman, M., Mataric, M.: Motion Planning Using Dynamic Roadmaps. In: ICRA, vol. 5,

pp. 4399–4404. New Orleands, LA (2004)
[9] Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Planning. IJRR

30(7), 846–894 (2011)
[10] Kavraki, L.E., Kolountzakis, M.N., Latombe, J.C.: Analysis of Probabilistic Roadmaps for

Path Planning. IEEE TRA 14(1), 166–171 (1998)
[11] Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic Roadmaps for Path

Planning in High-Dimensional Configuration Spaces. IEEE TRA 12(4), 566–580 (1996)
[12] Ladd, A.M., Kavraki, L.E.: Measure Theoretic Analysis of Probabilistic Path Planning. IEEE

TRA 20(2), 229–242 (2004)
[13] LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning. IJRR 20, 378–400 (2001)
[14] Li, Y., Bekris, K.E.: Learning Approximate Cost-to-Go Metrics To Improve Sampling-based

Motion Planning. In: IEEE ICRA. Shanghai, China (2011)
[15] Marble, J.D., Bekris, K.E.: Asymptotically Near-Optimal is Good Enough for Motion Plan-

ning. In: ISRR. Flagstaff, AZ (2011)
[16] Marble, J.D., Bekris, K.E.: Towards Small Asymptotically Near-Optimal Roadmaps. In:

IEEE ICRA. Minnesota, MN (2012)
[17] Nechushtan, O., Raveh, B., Halperin, D.: Sampling-Diagrams Automata: a Tool for Analyz-

ing Path Quality in Tree Planners. In: WAFR. Singapore (2010)
[18] Nieuwenhuisen, D., Overmars, M.H.: Using Cycles in Probabilistic Roadmap Graphs. In:

IEEE ICRA, pp. 446–452 (2004)
[19] Peleg, D., Schäffer, A.: Graph Spanners. Journal of Graph Theory 13(1), 99–116 (1989)
[20] Raveh, B., Enosh, A., Halperin, D.: A Little More, a Lot Better: Improving Path Quality by

a Path-Merging Algorithm. IEEE TRO 27(2), 365–370 (2011)
[21] Sanchez, G., Latombe, J.C.: A Single-Query, Bi-Directional Probabilistic Roadmap Planner

with Lazy Collision Checking. In: ISRR, pp. 403–418 (2001)
[22] Schmitzberger, E., Bouchet, J.L., Dufaut, M., Wolf, D., Husson, R.: Capture of Homotopy

Classes with Probabilistic Roadmap. In: IEEE/RSJ IROS, pp. 2317–2322 (2002)
[23] Simeon, T., Laumond, J.P., Nissoux, C.: Visibility-based Probabilistic Roadmaps for Motion

Planning. Advanced Robotics Journal 41(6), 477–494 (2000)
[24] Varadhan, G., Manocha, D.: Star-shaped Roadmaps: A Deterministic Sampling Approach for

Complete Motion Planning. IJRR (2007)
[25] Xie, D., Morales, M., Pearce, R., Thomas, S., Lien, J.L., Amato, N.M.: Incremental Map

Generation (IMG). In: WAFR. New York City, NY (2006)

