
Improving Sparse Roadmap Spanners

Andrew Dobson and Kostas E. Bekris

Abstract— Roadmap spanners provide a way to acquire
sparse data structures that efficiently answer motion planning
queries with probabilistic completeness and asymptotic near-
optimality. The current SPARS method provides these proper-
ties by building two graphs in parallel: a dense asymptotically-
optimal roadmap based on PRM∗ and its spanner. This paper
shows that it is possible to relax the conditions under which a
sample is added to the spanner and provide guarantees, while
not requiring the use of a dense graph. A key aspect of SPARS
is that the probability of adding nodes to the roadmap goes to
zero as iterations increase, which is maintained in the proposed
extension. The paper describes the new algorithm, argues its
theoretical properties and evaluates it against PRM∗ and the
original SPARS algorithm. The experimental results show that
the memory requirements of the method upon construction
are dramatically reduced, while returning competitive quality
paths with PRM∗. There is a small sacrifice in the size of the
final spanner relative to SPARS but the new method still returns
graphs orders of magnitudes smaller than PRM∗, leading to very
efficient online query resolution.

I. INTRODUCTION

An important challenge in motion planning is to compute
compact representations for shortest paths in continuous
configuration spaces (C-spaces) [1], such as the problem
in Fig. 1. This work focuses on practical solutions that
preprocess a C-space through sampling to (a) build small
roadmaps that can quickly return solutions, and (b) provide
theoretical guarantees regarding path quality. Previous efforts
integrate asymptotically optimal planners [2] with graph
spanners to provide asymptotically near-optimal solutions
[3], [4]. Spanners are subgraphs where the shortest path
between two nodes in the spanner is no longer than t times
the shortest path in the original graph, where t is the stretch
factor of the spanner. Spanners, however, only remove edges,
and these methods have no obvious stopping criterion. The
SPARS algorithm [5] provides asymptotic near-optimality
and ensures the probability of adding new nodes to the
roadmap converges to 0. This gives rise to a natural stopping
criterion inspired by Visibility PRM [6]. SPARS builds in
parallel an asymptotically optimal roadmap using PRM∗ that
includes all C-space samples, incurring high memory costs,
and limiting practicality.

This work extends SPARS and shows it is possible to build
a sparse roadmap spanner without using an underlying dense
roadmap. Fig. 2 shows the four cases that roadmap spanners
need to consider for adding nodes. Samples added for

Work by the authors has been supported by NSF CNS 0932423. Any
conclusions expressed here are of the authors and do not reflect the
views of the sponsors. The authors are with the Department of Com-
puter Science, Rutgers University, Piscataway, NJ, 08854, USA, email:
kostas.bekris at cs.rutgers.edu

Fig. 1. A roadmap spanner covering OMPL’s “apartment” environment [7],
which corresponds to an SE(3) challenge, and configurations for a piano
moving along a solution path from the top of the figure to the bottom.

coverage, connectivity, or for an “interface” do not need the
dense graph, while shortcut nodes require C-space shortest
path information. It is possible to relax the requirements for
adding such nodes and provide the desired near-optimality
guarantees without the dense graph so that the probability
of adding new nodes to the spanner goes to zero. Local
sampling and auxiliary information are utilized. This paper
details this new algorithm and its properties. Experiments
compare the method against PRM∗ and SPARS, and indicate
that it uses significantly less memory during construction.
The returned graph is similarly sparse compared to the
SPARS solution, though slightly denser. SPARS2 returns
paths competitive to those of PRM∗, better than those of
SPARS, and significantly better than the theoretical guar-
antees. Online query resolution times are very efficient on
both roadmap spanners and significantly shorter than PRM∗.

II. RELATED WORK

Sampling-based Motion Planning The Probabilistic
Roadmap Method (PRM) was the first approach that popular-
ized the idea of building a C-space roadmap using sampling
[8] and achieves probabilistic completeness [9]–[11]. The
PRM and its extensions have been used to solve a variety
of path planning problems, with some variations focusing
on roadmap size, coverage and connectivity [12], [13]. For
instance, the Visibility PRM rejects nodes unnecessary for
coverage or connectivity [6]. The Useful Cycles criterion
evaluates edges in terms of path quality [14]. Methods that
reason about path homotopy provide solutions that can be
smoothed to optimal ones [15], [16]. Hybridization graphs

Fig. 2. The four types of samples ρ ∈ C that roadmap spanners consider
for addition ro GS. Nodes may be added for coverage (guards), connectivity
(bridges), to connect nodes which share an “interface” (interface nodes), or
to satisfy near-optimality constraints when efficient C-space paths (ρ to ρ ′)
are found (shortcuts).

can be seen as a smoothing process that combines multiple
solutions into a single, better quality one [17]. Tree-based
planners, such as RRT [18], can also address problems with
dynamics and already return sparse graphs. RRT has been
shown, however, to converge to a suboptimal solution [2].
Tree-based planners can speed up their exploration using C-
space distance oracles, such as those provided by roadmap
spanners [19].

Asymptotic (Near-)Optimality Recent work introduced
asymptotically optimal sampling-based planners [2], such as
PRM∗, which requires each sample to be tested for connection
to a logarithmic function of the number of nodes in the
roadmap. Applying an efficient graph spanner [20] on the
output of PRM∗ reduces the number of edges, but not nodes,
of the roadmap and provides asymptotic near-optimality.
An incremental integration of spanners with PRM∗ provides
even better results [4]. The more recent SPArse Roadmap
Spanner (SPARS) algorithm [5] provides: i) probabilistic
completeness, ii) asymptotic near-optimality [for any cl-
clearance optimum path with cost c∗ in Cfree the method
returns a path of length t · c∗ + 4 · ∆ where t and ∆ are
user provided] and iii) the probability of adding new nodes
and edges to the roadmap spanner converges to 0. The
method uses an asymptotically optimal, dense roadmap to
build the spanner. C-space samples are included if they
improve path quality relative to paths on the dense graph.
The method provides efficient online query resolution with
path quality significantly better than the theoretical bounds.
Unfortunately, the memory requirements of the approach
during construction are significant.

III. PROBLEM FORMULATION

A robot operates in a d-dimensional configuration space
(C-space), where a point is denoted as q and Cfree is the
space’s collision-free subset. This work focuses on planar
and rigid body configurations (SE(2), SE(3)), but is appli-
cable if appropriate metric and sampling functions exist.

Definition 1 (The Path Planning Problem): Given the set
of free configurations Cfree ⊂ C, initial and goal points
qinit,qgoal ∈ Cfree, find a continuous path π ∈ Π = {q|q :
[0,1]→ Cfree}, π(0) = qinit and π(1) = qgoal.

Definition 2 (Robust Feasible Paths): A path planning in-
stance (Cfree, qinit , qgoal) is robustly feasible if a cl-robust
path exists that solves it, for clearance cl > 0. A path π ∈Π

is cl-robust, if π lies entirely in the cl-interior of Cfree.
A cl−robust shortest path in Cfree is denoted as π∗cl . The

following primitives are also used in this work:
Local Planner: Given q,q′ ∈ C, a local planner computes a
local path L(q,q′) connecting q and q′ ignoring obstacles. A
straight line between q and q′ in C is often sufficient.
Distance function: The space C is endowed with a distance
function d(q,q′)→ R that returns distances between config-
urations in the absence of obstacles.

The objective is to compute a compact roadmap for
answering queries with high-quality paths. This requires
finding which C-space samples can be omitted. An implicit,
exhaustive graph G(V,E) over Cfree can be defined by taking
all the elements of Cfree as nodes and collision free paths
between them as edges. Then, a “roadmap spanner” is
a subgraph GS(VS ⊂ V,ES ⊂ E) of G with the following
properties:
i) All GS nodes are connected in Cfree with a node on G.
ii) GS has the same number of connected components as

G (connectivity).
iii) All shortest paths on GS are no longer than t times the

corresponding shortest paths in G.
The above properties guarantee that if a query has a

solution, then GS will provide asymptotically near-optimal
paths for them. The shortest path between two configurations
computed on GS is denoted as πS. Specifically, the following
variant of asymptotic near-optimality is provided:

Definition 3 (Asympt. Near-Optimality w. Additive Cost):
An algorithm is asymptotically near-optimal with additive
cost if, for a path planning problem (Cfree, qinit , qgoal) and
cost function c : Π→ R≥0 with a cl-robust optimal path of
finite cost c∗, the probability it will find a path with cost
c ≤ t · c∗+ ε , for a stretch factor t ≥ 1 and additive error
ε ≥ 0, converges to 1 as the iterations approach infinity.

IV. A PRACTICAL SPARSE ROADMAP SPANNER

The proposed SPARS2 method (Algorithm 1) generates
samples ρ ∈ Cfree and decides if they must be added to the
graph GS. If M consecutive samples are not added, where M
is an input parameter, the algorithm returns GS.

The “coverage” criterion checks whether ρ is in a part of
Cfree not covered by nodes VS ∈GS (Algorithm 1 lines 4-5).
SPARS2 adds ρ to GS as a new “guard” (see Figure 2a), if
there are no nodes v ∈ VS within a “visibility” distance, ∆,
so that L(ρ,v) ∈ Cfree. The “connectivity” criterion is tested
in lines 8-12. Among the set N of spanner nodes which
can connect to ρ , the algorithm identifies those in different
connected components. If there are disconnected nodes, ρ is
useful as a “bridge” and is added together with the edges to
the disconnected nodes.

Algorithm 1: SPARS2(M, t,∆,δ ,k)

1 f ailures← 0; VS← /0; ES← /0;GS← (VS,ES);
2 while failures < M do
3 ρ ← Uniform Random Sample();
4 N← Visible Guards(ρ,VS,∆);
5 if N == /0 then
6 VS← VS∪ρ;

7 else
8 v← argminn∈N d(ρ,n);
9 if any two n ∈ N not connected then

10 VS← VS∪ρ;
11 for all such n ∈ N not connected do
12 ES← ES∪L(ρ,n);

13 else
14 v1← argminn∈N d(ρ,n);
15 v2← argminn∈N,n 6=v1 d(ρ,n);
16 if L(ρ,v1),L(ρ,v2) ∈ Cfree∧L(v1,v2) /∈ ES

then
17 Close Interface(ρ,v1,v2,GS);

18 if ρ /∈ VS then
19 (Σ,R)← Get Close Reps(ρ,v,GS,∆,δ ,k);
20 if R 6= /0 then
21 for each r ∈ R and σ ∈ Σ do
22 Update Points(ρ,σ ,v,r,GS);
23 Update Points(σ ,ρ,r,v,GS);

24 Test Add Path(v,GS);
25 for each r ∈ R do
26 Test Add Path(r,GS);

27 if no change in (VS,ES) then
28 f ailures++;

29 return (VS,ES);

The “interface” criterion checks if ρ can connect to its
two closest guards, v1,v2 ∈ VS, which share an interface but
no edge (lines 14-17). An interface i(v1,v2) between two
spanner nodes v1 and v2 is the shared boundary of their
visibility regions (see Figure 2 (bottom left)). These samples
must be included so that shortest paths π∗cl ∈ Cfree will be
“covered”, illustrated in Figure 3. This is necessary to argue
about the lengths of paths π∗cl(ρ0,ρm) and πS(ρ0,ρm). The
algorithm employs Close Interface, which attempts to
directly add the edge L(v1,v2) and if this is not possible,
then the sample ρ is added together with the edges L(ρ,v1)
and L(ρ,v2).

Lines 18-26 of the algorithm serve to uphold the spanner
property for GS. In relation to Figure 3, SPARS2 has to
make sure that for each shortest path π∗cl(ρi,ρi+1) between
points on the interfaces, the corresponding “midpoint” path
Mi satisfies the spanner property. The algorithm reasons
over shortest paths between samples supporting interfaces.
Every sample, ρ , is checked to determine if it does so via
Get Close Reps (Algorithm 2), which generates k random

Fig. 3. (left) All configurations along π∗cl(ρ0,ρm) will eventually be
covered by a node in GS. (right) A path between all spanner nodes covering
π∗cl(ρ0,ρm) will be created, decomposing path πS(ρ0,ρm) into “midpoint
paths” Mi−1 that exist only in a single visibility region. Each Mi−1 covers
the path π∗cl(ρi,ρi+1).

samples, σ , within a δ ball of ρ , where k and δ are input
parameters to SPARS2. If σ and L(ρ,σ) are collision free,
the method finds the representative guard vσ ∈ VS of σ . If
there is no such guard, then σ is a new guard that needs
to be added to GS. Otherwise, if vσ 6= v, where v is ρ’s
representative, the two samples ρ and σ support interface
i(v,vσ). Function Get Close Reps returns the sets Σ of
samples, and R, their guards, which revealed that ρ lies on
an interface of v.

Algorithm 2: Get Close Reps (ρ,v,GS,∆,δ ,k)

1 (Σ,R)← (/0, /0);
2 for k iterations do
3 σ ← Sample Near(ρ,δ);
4 if L(ρ,σ) ∈ Cfree then
5 Nσ ← Visible Guards(σ ,VS,∆);
6 vσ ← argminn∈Nσ

d(σ ,n);
7 if vσ does not exist then
8 VS← VS∪σ ;
9 return (/0, /0);

10 else if v 6= vσ then
11 Σ← Σ∪σ ;
12 R← R∪ vσ ;

13 return (Σ,R);

If R and Σ are not empty, then SPARS2 checks if ρ reveals
a short path between two interfaces of v. This is done through
functions Update Points and Test Add Path. In Figure 2
(bottom right), sample ρ lies on the interface of nodes v
and r, and may reveal that GS is not satisfying the spanner
property with regards to the shortest path π∗cl(ρ,ρ

′).

Algorithm 3: Update Points (ρ,σ ,v,r,GS)

1 for r′ ∈ VS \ r so that L(v,r′) ∈ ES and L(r,r′) /∈ ES do
2 (p, p′)← Pv(r,r′);
3 (ξ ,ξ ′)← Sv(r,r′);
4 if d(ρ, p′)< d(p, p′) then
5 Pv(r,r′) = (ρ, p′);
6 Sv(r,r′) = (σ ,ξ ′);

Update Points maintains two pairs of configuration sam-

ples for each pair of interfaces i(v,r), i(v,r′) of a spanner
node v so that L(r,r′) /∈ ES (see Figure 2 (bottom right)). The
pair Pv(r,r′) maintains the samples in the visibility region
of v which have the shortest distance among all samples
generated on the interfaces i(v,r) and i(v,r′). If ρ reveals a
distance between i(v,r) and i(v,r′) that is shorter than the
previous best, the information is updated.

Algorithm 4: Test Add Path (v,GS)

1 success← false;
2 for all r ∈ VS so that L(v,r′) ∈ EG do
3 for all r′ ∈ VS \ r so that L(v,r′) ∈ EG and

L(r,r′) /∈ EG do
4 (ρ,ρ ′)← Pv(r,r′);
5 (σ ,σ ′)← Sv(r,r′);
6 d{r,r′}← d(ρ,ρ ′);

7 ΠS←{πS(m(v,r),m(v,r′))};
8 for r′′ : L(v,r′′),L(r′,r′′) ∈ ES∧L(r,r′′) /∈ ES do
9 ΠS←ΠS∪{πGS(m(v,r),m(v,r′′))};

10 πS = argmax∀π∈ΠS |π|;
11 if (|πS|> t ∗d{r,r′}) then
12 if L(r,r′) ∈ Cfree then
13 ES← ES∪L(r,r′);
14 else
15 πadd ← Smooth Path(

{L(σ ,ρ),L(ρ,v),L(v,ρ ′),L(ρ ′,σ ′)});
16 ES← ES∪L(r,σ)∪L(σ ′,r′);
17 Add Path(GS,πadd);

18 success← true;

19 return success;

Test Add Path (Algorithm 4) uses this information to
check if a shortest path in Cfree violates the spanner. For
the node currently tested, v, the method checks all pairs of
neighbors r, r′, so that L(r,r′) /∈GS, finding the path through
GS that connects m(v,r) and m(v,r′) (line 7). For reasons
detailed in Section V (Lemma 3 - case two), it is necessary
to consider all paths between midpoints m(v,r) and m(v,r′′),
where r′′ is a neighbor of v not connected to r but connected
to r′. Among all such paths, ΠS, the longest, πS, is tested if
it violates the spanner property relative to d(ρ,ρ ′) (line 11).
If so, the spanner is extended. If a shortcut from r to r′ exists
in Cfree (line 12), then only this edge needs to be added to
GS. Otherwise, the algorithm employs a smoothing operation
over a path from the sample σ along interface i(v,r) to ρ ,
then to v, ρ ′ and eventually σ ′ along interface i(v,r′) (lines
14-17).

V. PROPERTIES OF SPARS2

SPARS2 and SPARS are equivalent to Visibility PRM in
terms of coverage and connectivity; thus, it is possible to
argue [5], [6] that SPARS2 is probabilistically complete:

Theorem 1 (Probabilistic Completeness): For all
ρ ∈ Cfree : ∃v ∈ VS so that L(ρ,v) ∈ Cfree, and For all

v,v′ ∈ VS with a collision-free path in Cfree, ∃πS(v,v
′)

which connects them on GS with probability 1 as M goes
to infinity in SPARS2.

The method also makes two assumptions:
Assumption 1: For v,v′ ∈Cfree, if the set of configurations

q for which L(q,v) ∈ Cfree, L(q,v′) ∈ Cfree, d(q,v) < ∆ and
d(q,v′)< ∆ is non-empty, then it has non-zero measure.

Assumption 2: No sample ρ is within distance cl from
obstacles. No v ∈ VS is within cl-distance from obstacles.
SPARS and SPARS2 deviate on (a) how they detect pairs

of nodes that share an interface (for criterion 3) and (b)
estimating shortest paths in Cfree between interfaces (for
criterion 4). Note that interfaces often have complex shape
due to obstacles and are hard to explicitly represent.
SPARS2 ensures every two spanner nodes that share an

interface also eventually share an edge in lines 14-16:
Theorem 2 (Connected Interfaces): For all v1,v2 ∈ VS

which share an interface, then L(v1,v2)∈ ES with probability
1 as M goes to infinity in SPARS2.

The above theorem is straightforward to prove, and the
core of this proof relies on the fact that there is a non-zero
measure set of configurations for any pair of vertices, v1,v2,
which share an interface, such that all points in this set have
v1 and v2 as their closest guards and are also visible. This
implies samples will eventually be generated in this set, and
the algorithm will bridge the interface.
SPARS2 relies on sampling rather than the dense graph

to pinpoint interfaces, necessary for the last criterion. This
increases computation time for construction, which will be
exacerbated in high-dimensional spaces, though not main-
taining the dense graph helps balance this cost. The following
lemmas argue that optimal paths in Cfree will be represented
by GS, which satisfies the spanner property.

Lemma 1 (Coverage of Optimal Paths by GS): For opti-
mal path π∗cl(ρ0,ρm), the probability of having a sequence of
nodes, Vπ =(v1,v2, ...,vn)∈GS with the following properties
goes to 1 as M goes to infinity:
• ∀ρ ∈ π∗cl(ρ0,ρm), ∃ v ∈Vπ : L(ρ,v) ∈ Cfree
• L(ρ0,v1) ∈ Cfree and L(ρm,vn) ∈ Cfree
• ∀vi,vi+1 ∈Vπ ,L(vi,vi+1) ∈ ES.

The above lemma follows from Theorems 1 and 2. Con-
sider a decomposition of path πS(ρ0,ρm) in GS through Vπ

into sub-paths {M0,M1, . . . ,Mm−1} (Figure 3(right)), where
Mi is the path between m(vi,vi+1) and m(vi+1,vi+2). M0 con-
nects ρ0 to v1, and m(v1,v2) and Mm−1 is the corresponding
last segment. The following can be easily shown:

Lemma 2 (Additive Connection Cost): The length of
paths M0 and Mm−1 for a path through GS connecting ρ0 to
ρm is upper bounded by 4 ·∆.

The important property, however, of segments Mi is:
Lemma 3 (Spanner Property of GS over Cfree): All Mi

have length bounded by t · |π∗cl(ρi−1,ρi)|, where ρi lies at
the intersection of π∗cl(ρ0,ρm) with interface i(vi,vi+1).

Proof Figures 4 and 5 support this proof. Given Lemma
1, the edges L(vi−1,vi) and L(vi,vi+1) are in ES, at least
as M goes to infinity. Assuming π∗cl travels through the
region of node vi ∈ Vπ , there are three possible cases: (a)

Fig. 4. (left) The path from i(vi−1,vi) to i(vi,vi+1) via GS must satisfy
the spanner property for path π∗γ . (right) If there is a path between vi’s
neighbors, then the paths πa = π(m(vi−2,vi−1),v,m(vi−1,vi+1)) and πb =
π(m(vi+2,vi+1),v,m(vi+1,vi−1)) must be checked against π∗α and π∗

β
.

L(vi−1,vi+1) /∈ ES (Figure 4(left)), (b) L(vi−1,vi+1) ∈ ES
(Figure 4(right)), and (c) L(vi−1,vi+1)∈ ES and L(vi−2,vi)∈
ES or L(vi,vi+2) ∈ ES (Figure 5).

For case one, SPARS2 checks |Mi| against |π∗cl(ρi−1,ρi)|.
SPARS asymptotically approximates the optimal path
π∗cl(ρi−1,ρi) via the dense graph; however, SPARS2 ap-
plies a conservative approximation by checking the distance
d(ρi−1,ρi) (Algorithm 4 lines 4-11) utilizing the information
stored in Pv(r,r′). If |Mi| > t ·d(ρi−1,ρi), Algorithm 4 adds
a shortcut path: either L(vi−1,vi+1) leading to proof case
two, or a path including σ and σ ′, which would change the
representative sequence Vπ .

Fig. 5. In the case that vi depends on
its neighbors for checking the spanner
property which in turn rely on vi, it
must be that |πe|< |πb|.

The second case ad-
dresses the issue that
|π∗cl(ρi−1,ρi)| could be
arbitrarily close to 0.
In lines 8-9 of Algo-
rithm 4, the method com-
pares d(ρi−1,ρi) not only
with the segment Mi, but
also considers all spanner
paths from i(vi−1,vi) to
the interfaces of all neigh-
bors of vi, which are not connected to vi−1 but share an
interface with vi+1. In the context of Figure 4(right), this
checks whether path πa satisfies the spanner property for
path π∗α and that path πb satisfies π∗

β
. If they do, then it does

not matter if segment Mi−1 satisfies the spanner property
for path π∗γ , because πa and πb cover all three consecutive
subpaths of the optimum path.

The last case, illustrated in Figure 5, has two subcases:
the solution returned from vi−2 to vi+2 does so through path
πa,b,c or through path πd,e, f . Return path πa,b,c is handled
by case two of this proof. For path πd,e, f , it is necessary
to show that |πe| ≤ t · (|π∗α |+ |π∗β |+ |π

∗
γ |). It is known that

|πb| ≤ t · |π∗α |+ |π∗β | from case two, and that |πd,e, f | ≤ |πa,b,c|
or it would not have been returned by SPARS2. Furthermore,
the construction of these segments enforces |πa| ≤ |πd |
and |πc| ≤ |π f |, as the endpoints are the intersections with
i(vi−2,vi−1) for πa and πd , and i(vi+1,vi+2) for πc and π f .
Combining these inequalities yields |πe| ≤ t · (|π∗α |+ |π∗β |)≤
t · (|π∗α |+ |π∗β |+ |π

∗
γ |). �

Combining the above lemmas yields:
Theorem 3 (Asymptotic Near-Optimality w/Additive Cost):

As M goes to infinity in SPARS2: ∀ρ0,ρm ∈ Cfree :
|πS(ρ0,ρm)|< t · |π∗cl(ρ0,ρm)|+4 ·∆.

An important goal of SPARS2 is to create a sparse data
structure, which is supported by the following theorem:

Theorem 4 (Cessation of Node Addition): As the number
of iterations of SPARS2 increases, the probability of adding
a node to GS goes to 0.

There are four methods for adding nodes to GS; thus,
all must be shown to have no reason to add nodes to GS.
Nodes for coverage and connectivity will stop being added
for reasons identical to SPARS. Theorem 2 argues that
SPARS2 stops adding nodes for bridging interfaces. Nodes
for ensuring path quality will stop being added due to a check
in Algorithm 4, line 12.

VI. SIMULATIONS

Simulations were run in the Open Motion Planning Li-
brary (OMPL) [7], using the “2D Maze” (SE2) and “Bug-
trap”(SE3) environments, over parameters δ = 0.5, ∆ = 15,
and t=(2,3,5,9), recording the maximum consecutive failures,
M. Data points were taken at 1, 2, 4, 8, 16, and 32 minutes
and compared with PRM∗.

Fig. 6. Performance of SPARS and
SPARS2 in terms of path quality relative
to the best PRM∗ path for 100 queries.
Stretch factor varies between t = 2(top) to
9(bottom). Construction time varies from
4mins to 32 mins.

Figure 6 compares
path quality of
SPARS and SPARS2
relative to the best
PRM∗ solution
computed after
32 minutes. Path
quality improves
over construction
time, as expected, but
moreover, SPARS2
produces very high-
quality paths early
on, even for large
stretch factors.
Furthermore, paths
produced by SPARS2
have lower cost
than SPARS. Figure
7 (left) measures
memory requirements
of the final roadmap
spanner. SPARS2
results in slightly
larger spanners than
SPARS, but are orders
of magnitude smaller
than PRM∗. It also
shows the average
path degradation is
significantly smaller
than the theoretical
guarantees.

The maximum consecutive failures to add nodes through
time is shown in Figure 7 (right). This value increases,
which is critical for the stopping criterion. Figure 8 details
memory requirements for SPARS2 in comparison to SPARS

Fig. 7. (left) Effects of the stretch factor on the size of the final roadmap
spanner after 32 minutes of construction. Each data point is labeled with
the average path quality for the experiment after 32 minutes. The size
of the roadmap returned by PRM∗ was 6,667,616 bytes. (right) Maximum
consecutive failures reached.

Fig. 8. Memory usage over time in SE2. (right) offline memory usage and
(left) online memory requirements. Offline memory usage for PRM∗ and
SPARS almost coincides with SPARS using slightly more.

and PRM∗. SPARS2, has a great advantage over the other
methods in terms of memory requirements for the offline
preprocessing, using close to two orders of magnitude less
memory. For online query resolution, the algorithms need
only the final planning structure to answer queries, with
memory requirements shown in Figure 8 (right).

Figure 9 reports path quality and query resolution times for
different construction times in SE(3). Overall, path quality
for both SPARS and SPARS2 are shown to improve over
time, though SPARS2 returns paths of higher quality than
SPARS. The query times for the algorithms correlate to the
size of the graph, giving both spanner methods a significant
advantage.

VII. DISCUSSION

SPARS2 is presented as an approach for solving path
planning problems in continuous configuration spaces, which
provides asymptotic near-optimality and greatly reduces
memory requirements upon construction versus previous
methods while maintaining theoretical guarantees on the rate
of node addition. It removes a dependence on a dense graph
representation of the space, instead relying on properties of
visibility utilized by localized sampling and smoothing pro-
cesseses. The resulting graph spanner provides high quality
paths, which are better than theoretical bounds suggest, even
early during its execution.

Open questions in this line of work include: (i) Extend-
ing the given properties to graphs with directed edges; a
necessary requirement for motion-constrained systems. The
current work relies on a BVP solver, which is often unavail-
able for interesting systems. (ii) Showing GS converges to
a finite structure, as the given properties cannot guarantee
this. (iii) It would be exciting to compute a confidence
value of attaining near-optimal paths in finite time. (iv) It
is relevant to know whether the method finds important
homotopic classes compared to other methods which focus

Fig. 9. Path quality at various times during execution(left) and query
resolution times (right) in SE(3) for commonly solved queries.

on this issue [15]. (v) The selection of t and ∆ to tune
results still requires investigation, as the dependence on
these parameters as well as δ is still unclear. (vi) Overall
optimization of the method to reduce collision-checking calls
and other expensive operations will speed up the method.

REFERENCES

[1] P. Agarwal, “Compact Representations for Shortest-Path Queries,”
September 2011, appeared at the IROS 2012 Workshop on Progress
and Open Problems in Motion Planning.

[2] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal
Motion Planning,” IJRR, vol. 30, no. 7, pp. 846–894, June 2011.

[3] J. D. Marble and K. E. Bekris, “Computing Spanners of Asympotically
Optimal Probabilistic Roadmaps,” in IEEE/RSJ IROS, San Francisco,
CA, September 2011.

[4] ——, “Asymptotically Near-Optimal is Good Enough for Motion
Planning,” in ISRR, Flagstaff, AZ, August 2011.

[5] A. Dobson, T. D. Krontiris, and K. E. Bekris, “Sparse Roadmap
Spanners,” in Workshop on the Algorithmic Foundations of Robotics
(WAFR), Cambridge, MA, June 2012.

[6] T. Simeon, J.-P. Laumond, and C. Nissoux, “Visibility-based Proba-
bilistic Roadmaps for Motion Planning,” Advanced Robotics Journal,
vol. 41, no. 6, pp. 477–494, 2000.

[7] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configura-
tion Spaces,” IEEE TRA, vol. 12, no. 4, pp. 566–580, 1996.

[9] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis of
Probabilistic Roadmaps for Path Planning,” IEEE TRA, vol. 14, no. 1,
pp. 166–171, 1998.

[10] D. Hsu, L. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin, “On
Finding Narrow Passages with Probabilistic Roadmap Planners,” in
WAFR, Houston, TX, 1998.

[11] A. M. Ladd and L. E. Kavraki, “Measure Theoretic Analysis of
Probabilistic Path Planning,” IEEE TRA, vol. 20, no. 2, pp. 229–242,
April 2004.

[12] D. Xie, M. Morales, R. Pearce, S. Thomas, J.-L. Lien, and N. M.
Amato, “Incremental Map Generation (IMG),” in WAFR, New York
City, NY, July 2006.

[13] G. Varadhan and D. Manocha, “Star-shaped Roadmaps: A Determin-
istic Sampling Approach for Complete Motion Planning,” IJRR, 2007.

[14] D. Nieuwenhuisen and M. H. Overmars, “Using Cycles in Probabilistic
Roadmap Graphs,” in IEEE ICRA, 2004, pp. 446–452.

[15] L. Jaillet and T. Simeon, “Path Deformation Roadmaps,” in WAFR,
New York City, NY, July 2006.

[16] E. Schmitzberger, J. L. Bouchet, M. Dufaut, D. Wolf, and R. Hus-
son, “Capture of Homotopy Classes with Probabilistic Roadmap,” in
IEEE/RSJ IROS, 2002, pp. 2317–2322.

[17] B. Raveh, A. Enosh, and D. Halperin, “A Little More, a Lot Better:
Improving Path Quality by a Path-Merging Algorithm,” IEEE TRO,
vol. 27, no. 2, pp. 365–370, 2011.

[18] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,”
IJRR, vol. 20, pp. 378–400, May 2001.

[19] Y. Li and K. E. Bekris, “Learning Approximate Cost-to-Go Metrics To
Improve Sampling-based Motion Planning,” in IEEE ICRA, Shanghai,
China, 9-13 May 2011.

[20] S. Baswana and S. Sen, “A simple and linear time randomized
algorithm for computing sparse spanners in weighted graphs,” Random
Structures and Algorithms, vol. 30, no. 4, pp. 532–563, Jul. 2007.

