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Abstract— Sampling-based algorithms provide efficient
solutions to high-dimensional, geometrically complex mo-
tion planning problems. For these methods asymptotic
results are known in terms of completeness and opti-
mality. Previous work by the authors argued that such
methods also provide probabilistic near-optimality after
finite computation time using indications from Monte
Carlo experiments. This work formalizes these guarantees
and provides a bound on the probability of finding a
near-optimal solution with PRM∗ after a finite number of
iterations. This bound is proven for general-dimension
Euclidean spaces and evaluated through simulation. These
results are leveraged to create automated stopping criteria
for PRM∗ and sparser near-optimal roadmaps, which have
reduced running time and storage requirements.

I. INTRODUCTION AND RELATED WORK

While motion planning is PSPACE-hard [1], [2],
sampling-based approaches can frequently provide ef-
ficient solutions in practice, even for high-dimensional,
geometrically complex problems [3], [4]. Two families
of methods have emerged. Approaches, such as the
Probabilistic Roadmap Method (PRM), preprocess a con-
figuration space (C-space) to create a structure useful
for answering multiple queries [5]. Tree-based planners,
such as the Rapidly-exploring Random Tree (RRT), are
suited for single-query planning and kinodynamic sys-
tems [6], [7]. Many variants focus on quickly finding
solutions and dealing with narrow passages [8]. Some
approaches are tailored to returning high-clearance paths
[9], or low cost solutions [10].

Formal analysis showed that sampling-based planners
provide probabilistic completeness, i.e., if the instance
has a solution, the methods solve the problem with prob-
ability approaching one [11], [12]. In the general case,
solution non-existence cannot be detected, although
there are efforts in this direction [13]. Recent progress
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identified the conditions under which sampling-based
approaches, such as PRM∗ and RRT∗, achieve asymptotic
optimality [14]. This property ensures that the computed
paths asymptotically converge to the optimal ones.

Asymptotic results do not characterize solution qual-
ity after a finite time of computation. Experimental trials
show that asymptotically optimal planners provide good
quality paths in practice, even if optimality constraints
are relaxed [15], [16], [17], [18], [19]. To bridge the gap
between theory and practice, bounds on path length after
finite computation are needed.

This work formalizes the Probabilistic Near-
Optimality (PNO) of efficient sampling-based roadmaps
under limited assumptions. A previous contribution by
the authors showed PNO properties for a PRM variant,
which asymptotically converges to a dense planning
structure, relying on Monte Carlo simulations to draw
bounds on path length and estimate parameters of the
bound [20]. Related work has initiated a similar study for
the FMT∗ algorithm [21]; however, the bound provided
in the FMT∗ work does not result in an automated
stopping criterion, as there are several free parameters.
The current paper provides the following contributions:
• A novel approximation to an unsolved problem in

geometric probability (to the best of the authors’
knowledge) to draw closed-form path length bounds.
• An analysis for PRM∗ as opposed to the previ-

ously considered PNO-PRM∗, which results in a denser
roadmap [20].

The analysis reasons over a construction of hyperballs,
which cover optimal paths in the C-space. Experimental
validation using simulations accompanies this analysis.
PNO properties can impact the practical use of motion

planning methods. For example, in robot task planning,
motion planners are queried frequently to determine
a solution to perform a higher-level task [22]. PNO

properties expose information, such as degradation from
optimal along a given homotopic class, and bounds on
solution non-existence, which can be useful for pruning
the search along different homotopic classes. This work
also results in an automated stopping criterion, which is
informed in terms of solution quality.



II. PROBLEM SETUP

This work examines kinematic planning in the config-
uration space C, the set of robot configurations q ∈ C. C
is partitioned into the collision-free (Cfree) and colliding
(Cobs) subsets. This work reasons over C as a metric
space, using the Euclidean L2-norm as a distance metric.
For robustly feasible motion planning problems, there
exists a set of δ-robust paths, i.e., paths with a minimum
clearance with Cobs of at least δ, which answer a query
(qstart, qgoal). Let the path of minimum length from that
set be denoted as π∗δn with length L∗δn . Then, this work
examines the following problem:

Defn. 1 (Robustly Feasible Motion Planning): For a
Robustly Feasible Motion Planning (RFMP) Problem
(C, qstart, qgoal, δn0

) such that an optimal δn0
-robust

path π∗δn exists, where π∗δn(0) = qstart and π∗δn(1) =
qgoal, find a solution path π : [0, 1] → Cfree, so that
π(0) = qstart and π(1) = qgoal.

Algorithm 1: PRM∗(n)

1 V ← ∅;E ← ∅;
2 for i = 1 . . . n do
3 v ← SAMPLE FREE();
4 V ← V ∪ v;
5 rn ← CONNECT RADIUS(i);
6 U ← NEAR(V, v, rm);
7 for u ∈ U do
8 if L(v, u) ∈ Cfree then
9 E ← E ∪ {L(v, u)};

10 return G = (V,E);

This paper studies a variant of PRM∗, which is an
asymptotically optimal method that results in a sparser
roadmap than PNO-PRM∗ considered in the prior work
by the authors [20]. The high-level operations of the
PRM∗ framework are outlined in Algorithm 1. The
difference lies in the radius used in the subroutine
CONNECT RADIUS. The considered variant uses twice the
connection radius of the original PRM∗ (rn = 2 · rPRM∗)
to achieve the following property:

Prop. 1 (Probabilistic Near-Optimality for RFMP):
An algorithm ALG is probabilistically near-optimal for
an RFMP problem (C, qstart, qgoal, δn0

), if for a finite
iteration n ≥ n0 of ALG and an error threshold ε, there
is a probability Psuccess that ALG returns a solution
path πn of length Ln, such that:

P(|Ln − L∗δn | > ε · L∗δn) < 1− Psuccess,
where L∗δn is the length of the optimum δn-robust path
π∗δn for a clearance value δn < δn0

, and n0 is a minimum
iteration that this guarantee can be provided.

Computing a bound n0 requires a pessimistic estimate
of the length of the optimal path L∗δn . The analysis
proceeds with the following high-level steps: first, some
basic definitions and constructions are given, and then
the probability of the method constructing a specific
class of path is provided. Next, the expected value and
variance of the length of such a path is approximated,
and finally, a probabilistically near-optimal bound is
derived using the Chebyshev inequality.

For the reader’s convenience, a glossary of terms is
available here:

Term Definition
δn Clearance of optimum π∗δn at iteration n.
ε Multiplicative error on path length.
Ln Rand. Var. for length of returned path.
L∗δn Rand. Var. for length of optimal path.

Psuccess Probability of generating a low-error path.
n0 Iteration where PNO requirements are met.
Bρ(x) Hyperball of radius ρ centered at x.
Mn Number of hyperballs at iteration n.
ρn Radius of the covering hyperballs.

P(Ωρn) Probability of generating a covering path.

III. ANALYSIS PRELIMINARIES

The analysis considers a theoretical construction of
hyperballs as illustrated in Figure 1. Consider Mn+1 =

dL
∗
δn

δn
e+ 1 balls Bn centered along π∗δn , i.e.

Bn = {Bρn(π∗δn(τ0)), . . . ,Bρn(π∗δn(τMn
))},

having radius ρn ≤ 1
2δn, where δn = 1

2rn, and where rn
is the connection radius used by this PRM∗ variant. These
disjoint hyperballs are centered δn distance apart. Any
pair of points lying in consecutive hyperballs is tested
for connection by PRM∗. This construction is similar to
the analysis of PRM∗, when θ1 = 2 (Definition 51) [14].

Consider for each hyperball, the set of samples S
generated by PRM∗, which lie in this hyperball. If |S| ≥ 1
for all of the hyperballs, then there must exist at least
one path through these hyperballs in the PRM∗ graph.
The analysis considers the existence and length Ln of
this path in order to provide PNO guarantees.

To ensure this path is constructed, the appropriate con-
nection radius rn must be used, which in the presentation
of the PRM∗algorithm it is a function of a parameter γPNO.
It is also possible to consider the use of a kPNO-PRM∗

algorithm, where at each iteration the new sample is
connected to the closest kPNO neighbors. Parameter kPNO
matches the expected number of samples in the radius
rn(γPNO). The values γPNO and kPNO are given as Lemmas
below for brevity purposes. Full derivations are provided
in an extended version of this work [23].
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Fig. 1. Hyperballs over an optimal path with radius ρn and separation
δn. Consecutive balls lie entirely within a hyberball of radius δn
centered at τt: Bδn (π∗δn (τt)).

Lemma 1 (Connectivity constant γPNO): To ensure
PNO properties of PRM∗, it suffices to use γPNO parameter:

γPNO > 4

((
1 +

1

d

)( |Cfree|
Vd

)) 1
d

= 2 · γPRM∗
Lemma 2 (Connectivity constant kPNO): To ensure

PNO properties of k-PRM∗, it suffices to use:
kPNO = 2d

Here, |Cfree| indicates the volume of Cfree, and Vd =
|B1(·)| is the volume of a d-dimensional unit hyperball.

At a high level, the reason the radius doubles rel-
atively to the analysis of the original PRM∗ algorithm
follows from the difference in hyperball constructions.
While using balls of the same radius ρn, PRM∗’s analysis
considered the case where the separation of the balls is
0. The current work has a separation of δn ≥ 2 · ρn.
Similarly, the previous analysis of PNO-PRM∗ differs in
that it used a fixed number of hyperballs [20]. The
current work parameterizes the separation and radius of
the hyperballs as functions over the number of drawn
samples n.

IV. PROBABILITY OF PATH COVERAGE

Foundational work on roadmap-based approaches
sought to characterize how quickly these methods return
valid solutions [11]. An exponential bound on this
probability was derived as:

P(Ωρn) ≥ 1−
2L∗δn
δn

e
−π·δ

2
n·n

4|Cfree| (1)

Here, P(Ωρn) represents the probability that a path has
been generated in a set of hyperballs centered around
a clearance-robust optimal path. A tighter bound was
derived in prior work for PNO-PRM∗ [20], while this
work presents a similarly tight bound for PRM∗. As an
example, for a two-dimensional configuration space with
|Cfree| = 100, L∗δn = 10, δn = 1, and for P(Ωρn) = 0.99,
the derived bound accurately reports 97 samples are
required as opposed to nearly 980 with Equation 1. This
bound follows from prior work in the literature [11],
[14], [20]. The derivation of γPNO also gives the value for

the hyperballs’ radii, ρn =
((

1+ 1
d

)( |Cfree|
Vd

)(
lnn
n

)) 1
d

, as

well as the number of covering hyperballs, Mn + 1 =
d Ln2ρn
e + 1. Substituting these values into the existing

coverage probability results from related work yields:

P(Ωρn) ≈
(

1−
(

1− a
)n) 1

2L
∗
δn

(
b

)− 1
d

+1

where a =
Vd

(
d

√(
1+ 1

d

)(
|Cfree| lnn
nVd

))d
|Cfree| , b =

(
1 +

1
d

)( |Cfree| lnn
nVd

)
. The value of a arises from the relative

size of the hyperballs in the free space, while b is related
to Mn. Simplifying this expression yields the following
Lemma:

Lemma 3 (Probability of Path Coverage): Let Ωρn be
the event that for one execution of PRM∗ there exists at
least one sample in each of the Mn + 1 hyperballs of
radius ρn over the clearance robust optimal path, π∗δn ,
for a specific value of n > n0 and ρn. Then,

P(Ωρn) ≈
(

1−
(

1− a
)n) 1

2L
∗
δn

(
b
)− 1

d+1

(2)

where a =
(

1 + 1
d

)(
logn
n

)
and b = |Cfree|

Vd
a.

V. BOUNDING PATH QUALITY

The high-level approach to determining the path qual-
ity bound is done in four steps. It first expresses the
bound in terms of the mean and variance of Ln. Then,
the expected value and variance of Ln are derived.
Finally, the results are combined.

A. Deriving a bound in terms of mean and variance

Let ΩC be the event that there does not exist a sample
in each of the hyperballs covering a path, i.e., P(ΩC) =
1−P(Ωρn). Then, the value for P(|Ln−L∗δn | > ε ·L∗δn)
can be expressed as:

P
(
|Ln − L∗δn | > ε · L∗δn | Ωρn

)
P(Ωρn)

+ P
(
|Ln − L∗δn | > ε · L∗δn | ΩC

)
P(ΩC)

It is assumed that P
(
|Ln − L∗δn | > ε · L∗δn | ΩC

)
is

close to 1 and is thus upper bounded by 1. Let y be
a random variable identically distributed with Ln, but
having zero mean, i.e., y = Ln − E[Ln]. Then,

P(|Ln − L∗δn | > ε · L∗δn) =

P
(
E[Ln] + y − L∗δn > ε · L∗δn | Ωρn

)
+ P

(
E[Ln] + y − L∗δn < −ε · L

∗
δn | Ωρn

)
,

Then, exploiting symmetry and some algebra:

P
(
|Ln − L∗δn | > ε · L∗δn | Ωρn

)
=

2P
(
y > (ε+ 1) · L∗δn − E[Ln] | Ωρn

)
3



Bound the right-hand side with Chebyshev’s Inequality:

P(|X − E[X]| ≥ a) ≤ V ar(X)

a2

In order to employ this inequality, both E[Ln] and
V ar(Ln) are needed.

B. Approximation of E[Ln] in Rd

For the sake of brevity, only the high-level approach
for deriving E[Ln] is given.

Fig. 2. The mean calculation in R3. (top) The first set of integrals
is performed over the left hyperball, averaging the distance between
points (x1, x2, . . . , xd) and (D, 0, . . . , 0). (bottom) A second set of
integrals is performed over the second hyperball using the above result,
yielding the expected value.

Let, E[Ln] =
∑Mn

m=1 E[Lm], where Lm is the length
of a single segment between hyperballs. Then, because
all Lm are I.I.D., E[Ln] = MnE[L1]. Then, E[L1] is
approximated via two integrations over the endpoints of
the segment, as outlined in Figure 2. The first integration
uses D, the distance between the center of the first
hyperball and a point in the second, while the second
integration integrates over the function, f(D). The first
integration attains the following form:

A =
1

Vdρdn

∫
· · ·
∫
x2
1+...+x2

d≤ρ2n√
(x1 −D)2 + x2

2 + . . .+ x2
d dx1 . . . dxd,

A second-order Taylor Approximation is employed,
assuming that ρn much smaller than δn. This integral
can be simplified using the following Lemmas, stated
without proof:

Lemma 4 (Recurrence relation of
∫ π

0
(sin θ)ddθ):

For Sd =
∫ π

0
(sin θ)ddθ, the following recurrence

relation holds:∫ π

0

(sin θ)ddθ = Sd =
d− 1

d
Sd−2

Lemma 5 (Value of
∫ π

0
(sin θ)ddθ): In terms of the

hyperball volume constant, Vd,∫ π

0

(sin θ)d−2dθ = Sd−2 =
dVd

(d− 1)Vd−1

These Lemmas lead to the following intermediate form:

A = D +
(d− 1)ρ2

n

2(d+ 2)D
. (3)

Integrate over A to attain E[Ln]. The steps taken are
similar to the steps taken above, as the form of the
integral nearly the same. After simplifying, the following
Lemma arises:

Lemma 6 (Expected value of Ln): The path built
over the set of Mn + 1 hyperballs having radius ρn has
expected length:

E[Ln] ≈Mn

(
δn +

(d− 1)ρ2
n

(d+ 2)δn

)
To verify the approximation, Monte Carlo experi-

ments were employed. The relative error of the approx-
imation to the simulated values are shown in Figure 3:

Euclidean λn = 0.5 λn = 0.125
dimension % error % error

2 0.1730% 0.0050%
3 0.0473% 0.0205%

10 0.9413% 0.0128%
100 1.9147% 0.0129%

Fig. 3. Simulation comparison for E[Ln], using 120,000 data
points for each entry, for differing λn = ρn

δn
, where the error is

100 · |E[Ln]−Ln|
Ln

.

C. Computation of the Variance of Ln in Rd

To compute the V ar(Ln), leverage the definition of
the variance of a random variable, i.e. V ar(X) =
E[X2]− (E[X])2:

V ar
( Mn∑
m=1

Lm
)

= E[

Mn∑
m=1

L2
m]−

(
E[

Mn∑
m=1

Lm]
)2

=

Mn∑
m=1

Mn∑
k=1

E[LmLk]−
(
E[

Mn∑
m=1

Lm]
)2

The second term can be simplified due to the linearity
of expectation:

V ar
(
E[LmLk]−M2

n

(
E[Lm]

)2
Here, only the variance terms of each segment and

covariance between adjacent segments contribut to the
sum, allowing a simplification to
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V ar
( Mn∑
m=1

Lm
)

= MnE[L2
1]

+ (2Mn − 2)E[L1L2] + (2− 3Mn)
(
E[L1]

)2
E[L2

1] and E[L1L2] are unknown. For the sake of
brevity, derivations for these values are omitted, and
their values are given.

Lemma 7 (Expected value of L2
1): For two consecu-

tive hyperballs, the expected squared distance between
random points in those balls is

E[L2
1] = δ2

n +
2d

d+ 2
ρ2
n

Lemma 8 (Expected value of L1L2 in Rd): For
three consecutive hyperballs, the expected value of
the product of the lengths of the segments connecting
random samples inside those balls is

E[L1L2] ≈ δ2
n +

(2d− 3

d+ 2

)
ρ2
n

Subsitute the values from Lemmas 6, 7, and 8 into
the above form to get:

V ar
( Mn∑
m=1

Lm
)
≈Mn

(
δ2
n +

2d

d+ 2
ρ2
n

)
+ (2Mn − 2)

(
δ2
n +

2d− 3

d+ 2
ρ2
n

)
+ (2− 3Mn)

(
δn +

(d− 1)ρ2
n

(d+ 2)δn

)2

After simplification, the following Lemma can be
reached:

Lemma 9 (Variance of Ln): Ln has variance:

V ar(Ln) ≈ 2ρ2
n

d+ 2
Simulations verify that the drawn approximation char-

acterizes the variance properly, as shown in Figure 4:

Euclidean λn = 0.5 λn = 0.125
dimension % error % error

2 6.0245% 0.5739%
3 9.7691% 1.0655%
10 19.0989% 2.1429%

100 23.7279% 2.8191%

Fig. 4. Simulation comparison for V ar(Ln), using 120,000 data
points for each entry, where the error is 100 · |V ar(Ln)−V ar

MC |
V arMC

.

D. Finalizing the PNO guarantee of PRM∗

Using the computed mean and variance, the final
bound is derived. Substituting into the form reached in
Section V-A yields:

2P
(
y > Mnδn

(
δn −

(d− 1)ρ2
n

(d+ 2)δ2
n

)
| Ωρn

)

Applying Chebyshev’s Inequality results in the follow-
ing theorem:

Thm. 1 (Probabilistic Near-Optimality of PRM∗): For
finite iterations n, PRM∗ is probabilistically near-optimal,
returning a path of length Ln such that

P
(
|Ln − L∗δn | ≥ ε · L

∗
δn

)
≤ 1 + P

(
Ωρn
)
(χ− 1),

where χ =

4λ2
nδ

2
n

d+2

L∗δn
2
(
ε− (d−1)

(d+2)λ
2
n

)2 (4)

VI. USING PNO PROPERTIES IN PRACTICE

This section highlights various ways PNO properties
can be leveraged in practice.

A. Extending PNO to roadmap spanners.

As a matter of practicallity, PNO properties extend nat-
urally to certain practical methods which reduce memory
requirements [17]. In particular, two such methods, SRS
and IRS, provide a spanner over the output of PRM∗,
which leads to the following Corollary:

Corr. 1 (PNO of SRS and IRS): For finite iterations n
and input stretch t, SRS and IRS are PNO, probabilisti-
cally containing a path of length Lspan such that

P
(
|Lspan − t · L∗δn | ≥ ε · t · L

∗
δn

)
≤ 1 + P

(
Ωρn
)
(χ− 1)

B. Online Prediction of L∗δn
The length of the optimal path in the same homotopic

class as PRM∗’s current solution can be approximated.
Estimate L∗δn by considering the number of hyperballs
Mn+1 to estimate ε. Then, use the current returned path
length from the algorithm, Ln, and set L∗δn = Ln

(ε+1) .
From the analyis, it can be shown that:

P
(
Ln − L∗δn ≥ ε · L

∗
δn

)
= P

(
L∗δn ≤

Ln
ε+ 1

)
≤

P
(
|Ln − L∗δn | ≥ ε · L

∗
δn

)
≤ 1 + P

(
Ωρn
)
(χ− 1)

Consider, however, that this result is only valid given
that π∗δn exists for the current value of δn. Therefore,
it is critical that the algorithm executes at least until
δn ≤ δn0

, i.e. when n ≥ n0. Then all that remains is to
solve the bound in terms of ε. From above:

P
(
L∗δn ≤

Ln
ε+ 1

)
= 1− Psuccess ≤ 1 + P

(
Ωρn
)
(χ− 1)

Performing some algebraic manipulation yields:

χ ≥ 1− Psuccess
P(Ωρn)

(5)

Then, substituting χ and simplifying leads to the fol-
lowing Lemma:

Lemma 10 (Multiplicative bound εn): After n > n0

iterations of PRM∗, with probability Psuccess, if π∗δn
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exists, then PRM∗contains a path εn-bounded by L∗δn
where:

εn ≤
2λnδn
L∗δn

√
1

(d+ 2)(1− Psuccess
P(Ωρn)

)
+

(d− 1)

(d+ 2)
λ2
n (6)

Finally, estimate L∗δn as L∗δn ≈
Ln

(εn+1) .

C. Deriving probabilistic stopping criteria

This section derives n0 for a desired confidence prob-
ability PDES within an error bound εDES . Let λn = 1

2
and then solving Equation 6 for P(Ωρn) yields:

(d+ 2)
(
1− Psuccess

P(Ωρn)

)
≥ 1

M2
n

(
εn − 1

4
(d−1)
(d+2)

)2
Solving for P(Ωρn), the right hand side will be denoted
as ψ:

P(Ωρn) ≥ 1

1
PDES ·

(
1− 1

M2
n0
·(d+2)

(
εDES− (d−1)

4(d+2)

)2) = ψ

Then, substituting the form of Equation 2 using ρ0,
Mn0

, and n0, and solving for n0 yields the following
Lemma:

Lemma 11 (PNO iteration limit for PRM∗): For given
εDES and PDES , the graph of PRM∗ probabilistically
contains a path π0 of length L0 with P

(
|L0 − L∗δ0 | ≥

εDES · L∗δ0
)
≤ 1− PDES after n0 iterations, where

n0 ≤

⌈
log (1− Mn0

√
ψ)

log (1− |Bρ0 ||Cfree| )

⌉
,where,

ψ =
1

1
PDES ·

(
1− 1

M2
n0
·(d+2)

(
εDES− (d−1)

4(d+2)

)2) (7)

When n ≥ n0, if no path has been returned within
the error bound, then with probability at least P(Ωρn), no
such optimal path exists within the supposed homotopic
class of π∗δn . It is left to future work to determine the best
approach for reasoning over multiple homotopic classes.

(R3) n ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0
100 0.0028 0.1424 0.7601 0.9362

1, 000 0.0666 0.5815 0.9330 0.9835
100, 000 0.7675 0.9635 0.9957 0.9990

10, 000, 000 0.9785 0.9977 0.9998 0.9999
(R6) n ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0

500 0.0000 0.0033 0.6335 0.8235
5, 000 0.0000 0.0845 0.8584 0.9712

500, 000 0.0017 0.5884 0.9669 0.9934
50, 000, 000 0.5914 0.8856 0.9924 0.9985

Fig. 5. Probability of returning near-optimal paths for 3D and
6D collision-free problem instances. Here, |Cfree| = 1,000 (R3), and
216,000 (R6).

The tables in Figure 5 provide an indication of the
required iterations for problems of varying dimension.

VII. SIMULATIONS

Simulations were performed in four environments on
the PRACSYS simulation software [24]. Environments
with obstacles are shown in Figure 6, which were created
to be highly regular, to simplify the computation of
|Cfree| and L∗δ0 , namely that they could be geometrically
computed easily.

Fig. 6. The environments with obstacles: Barriers (Left), and Maze
(Right). Here, the robot translates, but does not rotate.

The parameters of these environments can be found
in Figure 7.

Environment |Cfree| εDES δn0 L∗δ0
Maze 11150 0.2 5.0 240.0

Barriers 700 0.2 0.5 16.5
Empty (2D) 300 0.2 1.0 20.0
Empty (T 3) 248.0520 0.3 0.7 3.4641

Fig. 7. Parameters for the test environments examined.

For the desired path bound, the iteration limit n0 was
computed. Then, out of 500 trials, the probability of suc-
cessfully generating a short path through the hyperballs
over π0 is computed. The stopping criterion properly
selects n0 so that Psuccess is greater than the input
threshold PDES , which was set to 0.9. The probability of
success for the algorithm over time is given in Figure
8 for the chosen environments, where the formula for
Psuccess is derived from Equation 5 to get

Psuccess ≥ P(Ωρn)(1− χ).

The bound becomes loose for shorter paths relative
to their clearance, as seen for the Torus environment.
Otherwise, the bound performs well, and discrepancies
are due to simplifying assumptions made during the
analysis. The experiments validate that the stopping
criterion accurately stops the methods so as to achieve
PNO properties.
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Fig. 8. Probability of returning a path within the bound over time.

VIII. DISCUSSION

This work extends “probabilistic near-optimality”
(PNO) properties to PRM∗, i.e., an asymptotically optimal
but relatively sparse sampling-based roadmap method,
and removes dependence on Monte Carlo simulations
compared to previous work [20]. The analysis pro-
vides tight bounds for path quality, which are validated
through simulations.

Due to the difficulty of the motion planning problem,
PNO properties often require many samples to provide
near-optimal paths with high confidence. But they also
provide error and confidence bounds for a given budget
of iterations. Difficult problems may require exponen-
tially many samples to provide high-quality solutions,
even when considering deterministic and quasi-random
sampling. Nevertheless, this bound can inform what
level of degradation can still be achieved.

An important future step is the extension of PNO

properties to RRT∗. Furthermore, extending PNO to sparse
methods [25], which add few nodes and reduce com-
putational requirements, is also interesting. Path length
bounds are drawn under the assumption of a Euclidean
distance metric. For many robotic systems, however,
this is not appropriate. Future work should address non-
additive cost functions, such as clearance and Hausdorff
distance, as well as metrics in spaces such as SE(3).

An effort to consider an analysis for lattice-based
sampling has revealed many difficulties. It adds a de-
pendence on the position of the optimal path to the
analysis, and involved exponentially many points to
cover the space. Furthermore, appropriate lattices must
be identified in many dimensions.

This work also only considers only those paths that
are within a radius of the optimum one. The provided
bound can benefit both from considering other classes of
paths as well as using tighter, numerical approximations.
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