Balancing State-Space Coverage in Planning with Dynamics

Yanbo Li and Kostas E. Bekris

Abstract— Sampling-based kinodynamic planners, such as
the popular RRT algorithm, have been proposed as promising
solutions to planning for systems with dynamics. Nevertheless,
complex systems often raise significant challenges. In particular,
the state-space exploration of sampling-based tree planners
can be heavily biased towards a specific direction due to the
presence of dynamics and underactuation. The premise of this
paper is that it is possible to use statistical tools to learn quickly
the effects of the constraints in the algorithm’s state-space
exploration during a training session. Then during the online i . o
operation of the algorithm, this information can be utilized ~ Fig- 1. A 3-link Acrobot. The controls are the joint torqués, 6> andds
so as to counter the undesirable bias due to the dynamics are the gIobaI_c_)rlentatlo_ns of theyz links. 'I_'he state oftheesyalsomc_ludes
by appropriately adapting the control propagation step. The angular velocities. In this paper’s experiments each lirk ®&Kg weight.
resulting method achieves a more balanced exploration of the
state-space, resulting in faster solutions to planning challenges.
The paper provides proof of concept experiments comparing
against and improving upon the standardRRT using MATLAB
simulations for (a) swinging up different versions of a 3-link

Acrobot system with dynamics and (b) a second-order car-like ’
system with significant drift.
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. INTRODUCTION

Many interesting physical systems exhibit challenging dy- Ty
namics and underactuation that complicate motion planning
One prototypical problem in this context is swinging up an
Acrobot system in the presence of gravity [1], [2], as dis-
played in Figure 1. This is an important benchmark because
many classes of robots, especially walking robots, exhibit ” : i T 4
similar levels of underactuation and dynamic constraints. 4 3 2

One approach for planning with dynamics is the frameFig. 2. A projection of the states explored by the stand@®d algorithm

work of sampling-based kinodynamic algorithms, such asfter 50,000 iterations to a torus that correspondg;t@nd 9-. The black

the popularRRT method [3] [4] and alternatives [5] [6] dot corresponds to the initial state, 0,0, 0, 0, 0), where all the links face
. . . horizontally to the right and have zero angular velocity.elia dynamics,

These methods aim to cover as qUICkly as pOSSIble tri‘ﬁcluding gravity, the exploration is heavily and undeBlyabiased.

state space through sampling. Specifically /& algorithm

makes use of an implicit Voronoi bias when selecting states the main ideas in this paper is to (a) learn the biases intro-

and controls to expand a reachability tree into the staigceq by the dynamics in the state space exploration process
space. This favorable bias, however, is no longer availablgiing an offline training phase and then (b) counteract the
if there is no good distance metric in the state space Qecis of these undesired biases during the online operati

if drift and other dynamic constraints introduce undesiregs 1o algorithm so as to achieve a more balanced coverage
biases. Figure 2 illustrates the challenges in planning thi¢

. c . of the state space. As a feasibility study of these ideas, thi
standardRRT for the Acrobot. The figure provides the six-

paper utilizes a classical statistical tool for buildinggictive

dimensional states (three angles and three angular viek)cit models, that of Principal Component Analysicp) [7], [8],
along the reachability tree produced BRRT after 50,000

¢ ) ] ) 9]. Even thoughPCA is a linear method and the Acrobot
iterations. The states are projected onto the torus defiged "5 non-jinear system, it is still possible to acquire ukefu
the orientations of the Acrobot's first two links. The statejnormation about the exploration bias because the system i
space exploration is severely biased due to the dynamics aﬁﬁﬁhly constrained. During the online step, the exploratio
the vicinity of the goal (swinging up the Acrobai; = %

2
Y

2 = 7) has not even been approached yet.

procedure is modified so as to promote the propagation of
the search tree towards the direction of the least significan
components. In the context of tHRT, this can be achieved

) . ) ) by selecting at each iteration the control which brings the
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This paper provides indications that the above procedure Il. RELATED WORK

is beneficial when planning for highly constrained systems. pirect or kinodynamic planning searches directly the en-
Experimental results suggest that it is possible to solv§e state spaceX) of a dynamical system. There are many
planning problems for the Acrobot, as well as for a caryays to approach such problems in the related literature:
like system, faster, since the state space is covered mqreQptimal control can be applied for direct planning [15]
efficiently. At the same time, the computational overheadpyt handles only simple systems. Algebraic solutions are
during the online operation of the algorithm is minimal. On known only for 2D point masses [16], [17].

average, each iteration of tHRCA-based algorithm is only ¢ Numerical optimization [18] is expensive and suffers from
1.15% more time consuming than an iteration of the standarghcal minima.
RRT. Only a few matrix transformations and operations havg Search-based methods compute optimal paths with grid-
to be executed to achieve the desired result. Concerning thgased approximations ifr but depend exponentially to the
cost of the offline training procedure there are two issues: resolution [19], [20].
e How large should the trees be during the offline process? A polynomial-time, search-based approximation algorithm
e How many trees should be propagated during training? solves the problem efficiently for a point mass with dy-
Experiments indicate that a small number, even just one, amics [21] and extends to more complicated systems [22],
small size trees is sufficient. Overall, the experimentsasho[23]. Sampling-based tree planners, suchRES [3], [4],
that the combined cost of the offline step and the online stepxpansive Spaces [5], and tlRBST algorithm [6], can be
is smaller than the cost of a solution with the stand@RT.  seen as extensions of such search-based methods that employ
An important advantage of the methodology is that iheuristics to evenly explorg’.
does not heavily depend upon the underlying system. As These methods follow a selection-propagation scheme to
sampling-based planners are general methods, similagly thonstruct the tree data structure in the state space. At each
proposed approach does not depend on the properties ifation they first select a node/state along the tree that i
specific systems. Nevertheless, the more constrained thReady connected with a path to the start state. Then they
system is, the more beneficial the modification is expectespply a control from the selected state. In particular,RR&
to be. If the system does not suffer from any bias, then thgigorithm selects the initial state for expansiamn,(,,) by
technique is automatically equivalent to a standaid’. randomly sampling a state....q and then finding the closest
Furthermore, while the idea is described in the context aftate along the tree t9,,,4. If the metric used for finding
the RRT, it could be also paired with alternative methods. Irthe closest state is appropriate and if the propagation step
particular, there are techniques for adapting the sampliog is not biased then the algorithm has a Voronoi bias. This
cess in sampling-based tree planners [10], [11] and methogisplies that the larger unexplored sections of the stateespa
for producing motion primitives [12], [13]. The current vor have higher probability of being explored.
is complementary to many of these existing methodologies. There are also bidirectional versions of the algorithm that
Another important advantage of the proposed methogbnsiderably improve performance [24]. The bidirectional
is that it is not necessary to study the coverage of thRRT, however, requires a “steering method” to connect two
complete state space but instead to focus on a task spagecific states or a way to address gaps in the merging
that is important for the problem’s solution. For instartt®,  process of the two trees, which for certain systems is plessib
dynamical version of the Acrobot has a six-dimensionakstato achieve [25], [26]. Nevertheless, the application of the
space but it is fairly straightforward to apply tfRCA on a  bidirectional tree approach is challenging for the type of
subspace. For example, if the goal is specified only in termystems considered in this paper.
of the configuration that has to be achieved (i.e., the three Alternative schemes tdRRT use different mechanisms
orientations of the links so that the Acrobot is verticatiert  to implement the selection-propagation step. For example,
PCA can be run only in the configuration space (C-spacahe PDST algorithm uses an adaptive subdivision scheme
and not the complete state space, since this is the space tfatY and a scoring system over edges for guaranteeing
it is important to be covered to solve the problem. probabilistic completeness. This is an approach that hes be
Last but not least, this work, as a proof of concept, opengsted on the Acrobot system [27].
the door to many exciting extensions, such as the online Many recent methods focus on applyiRRT-like solu-
computation of the principal components and the onlindons to challenging problems that involve manipulators or
adaptation of the exploration procedure. It can also leaal tograsping, or high-dimensional systems, or underactuatdd a
hierarchical and local learning of the principal composesdt dynamical systems [28], [29], [30], [31], [32], [33], [34].
as to deal with different biases in different parts of theéesta Many of these techniques make use of the idea that the search
space. A challenging variant of the method is to automatcan be focused in a subspace of the complete state space
cally select a projection of the complete state space whef28], [35], [32], [34], [33]. Then this subspace correspsnd
the PCA should be executed. It is similarly interesting toto the task space, the space defined by the specific task and
study the application of non-linear dimensionality reduet  goal that has to be achieved. Recent work applies task-space
[14], more complex models of dynamical systems that makeontrol tools to the problem of planning for the Acrobot [29]
use of physics-based simulation, as well as the effects {#8], and together with the work oRDST, it has motivated
obstacles and collisions to the computation of the biases. the focus of this paper on this specific benchmark.



There have also been previous efforts to utilize tools sugbint angles and three angular velocities. For the current
as Principal Component AnalysiPCA) in motion planning implementation only the orientations of the three links are
from which this work is inspired. The idea has been to usesed for each state, since the modification is applied only in
PCA in an online fashion in order to accelerate the seardhe configuration space where the goal state and the metric
procedure oRRT-like algorithms once the tree has alreadyis defined. Algorithm 1 summarizes the offline step of the
reached the narrow passage [36]. In this onR@A approach proposed approach.
for geometric planning, the idea is to bias the exploratibn o
the tree so as to favour the directions in which the varianodlgorithm 1 Offline Step - INPUT: n
of the growing tree is high. There have also been effort¥ « RRT- Connect (n)
that utilize PCA in the study of protein motion [37], [38]. M « coordinates of T’s nodes
To the best of the authors’ knowledge there has not been @ () < PCA(M)
application ofPCA in motion planning so as to express the
effects of dynamic constraints in the exploration perfanoe

of sampling-based algorithms. B. Online Step
For the online step, the pseudo-code is provided in Algo-
1. USING PCA TO IMPROVE COVERAGE rithm 2. As it can be seen, the proposed approach follows

The approach proposed in this paper is split into two stept)e basic structure of th&RT algorithm but modifies the
an offline learning procedure and a modification of the onlineampled state,..,,; before calling the Extend step.
operation of theRRT algorithm. For the offline part, the
approach first applies a standard sampling-based algqgrithAdgorithm 2 Online Step - Inputz( K, b,1
such aRRRT- Connect , to grow a tree with a certain number 7'.init(z)
of nodes. Once the desired tree has been expande@Aa for i =1 to K do
is executed on the coordinates of all the nodes/states toz,,,q «— SampleX
calculate a new basis. This basis can be used to represent,,.,, < find nearestt € T' t0 z,4n4
the principal directions that the tree has expanded insidex!  , < Transform(inv(b), Zrqnd )
the state space. For the online part, the approach alters thec, ., < Modify( i,z )

new

random state(x,.,q) towards which the tree is extended. ., < Transform(b, z/,.,, )
The modification encourages the tree to favor directions in z.q4c < EXtend(zpear, Tnew )
which the variance is low in the offline tree. T.AddVertexeqge)

T.AddEdge(Znear, Tedge )

A. Principal Component Analysis and Offline Step
Principal Component AnalysisPCA) is a statistical tool

to investigate the underlying dimensions of a dataset ], [ state spaceX’. Then the nearest state along the tree is found
It provides a transformation from a number of possible inéccording to a metrig(-,-) : X x X — R. Once the nearest

terr_elated data to a_S”?a”e“ number of indepe_ndent VanabI‘aneighbor is found, then the coordinates of the randomly
which are called principal components. The first componelg%‘mpled state are transformed into the basisomputed
found accounts for the direction of the highest variance iﬂéqt)he offline part. Then for each principle component, the

The algorithm first samples a random statg,,; in the

the dataset.'Subsequent components agcount for d('ec.reasd rithm modifies the corresponding coordinate according
levels of variancePCA returns a new basis for the original ; ", eigenvalues of the corresponding matrix

data as well as the corresponding variance in each direction More specifically the function “Modify” executes the
These correspond to the eigenvectors and the eigenvalLfSﬁowing steps. Letl, > > 1, > 0 be the eigenvalues
produced by the method respectiveBCA assumes that the of the covariance matrix, anth, ..., b, the corresponding

underlying operation of the system can be expressed by & anyectors. The coordinates of the adjusted random state
linear process. /

. Thew IS given by:

In the general casBCA operates over a matrix/dataget
with dimensionn x d, where each observation df values Vi€ [1,n),27,, = l—lz’(i)mnd (1)
corresponds to a row. There anetotal observations. In the ‘ li
first step, the basic version of the algorithm subtracts theor each principal dimension, the algorithm rescales the
mean from each dimension of the data. Then, it computemmple coordinate. The adjustments keep the direction with
the covariance matrixC' with dimensiond x d and its the most variance unchanged, while it projects low variance
eigenvectorsh, as well as the corresponding eigenvalueslirections outwards depending on their eigenvalues. Tke ne
l. Finally, the method transforms each observation dattep transforms!,, , back into the coordinates of the original
point by the new basi$. In this work, the observations state spacey, resulting to the state,,.,,, and then attempts
correspond tan states extracted from the tree computed byo connect the nearest nodsg.... to the modified sample
RRT- Connect . These states correspond to the last state,., by calling function Extend.
of each propagation step in the algorithm. For the Acrobot Algorithm 3 details the operation of Extend. The function
system the dimensionality of each state is 6, the thrdestsk random controls from the state,.., and integrates
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Fig. 3. Trees created through sampling in highly constraspates tend
to explore certain directions in the state space much more tiiagrs.
Algorithm 2 alters the sampling process so as to bias the siparof

the tree towards the least explored dimensions.

them for timet. The resulting state of each integration
is denoted ast.,;. For eachz.,; the function computes
the distance tar,.,. The closestr.,; t0 z,., and the

Fig. 4.  (up) The nodes/configurations reached by R algorithm
after 1000 iterations for an APP Acrobot. (down) The nodasfigurations

corresponding control are selected for the expansion dtep @ached by the proposdCA-based variation after 1000 iterations.

the algorithm.

Algorithm 3 Extend(xnear, Tnew )

Pmin < OO
for i=1to k do
Urand < Sampleld
Lext < Integrate?@near» Urand t)
P — p(xext; xnew)
if pmin > p then

Tnew = Text
return z,,c.

the joints. Each link has 0.5m in length and 0.5 kilograms in
mass and there is an assumption of uniform density. There
are no angle limits but the maximum absolute value for the
torque at each joint is 20 Nm, unless specified otherwise.
Tests were conducted for different modes of the system. For
example, all joints can be actuated, a mode that is referred
to as AAA. The mode APP indicates that only the first
joint, that is connected to the fixed base, is actuated and the
subsequent two are passive. Consequently, this is a highly
underactuated mode. Similar naming conventions apply to
AAP, PAA and PPA.

Figure 3 illustrates the difference in the growth of a For the distance measure the implementation ignored the
sampling-based tree data structure computed by a stand&fect of velocities, and the distance between two statde-is
RRT in highly-constrained spaces and the effects of thBned to be equal to the distance between two configurations.
proposed version oRRT that usesPCA. The oval in the The topology of the configuration space for the Acrobot is
figure illustrates the probability of growth along diffeten @ three dimensional torus, corresponding to the three joint
directions. The dynamic constraints of real systems, su@fdles. The distance measure between two configurations is
as the Acrobot, distort the expected isotropic distributiodefined as the sum of the distances of the corresponding
of the state-space exploration into an ellipsoidal one. Thhgles. The distance between two anglesind ¢; for the
PCA adjustment proposed here biases the expansion of thih joint is defined as:

tree towards the principal dimension that the stand?iRd

algorithm would least explore.

IV. EXPERIMENTAL RESULTS
A. Acrobot Model and Setup

d(0;,0%) = miny i |2k + 0;, 2k'7 + 6]

wherek, k" are integers. Consequently, the overall distance
metric between two states = (61,02,0s,061,62,03) and
x' = (01,05,05,01,05,05) = is:

The algorithm is tested on a 3-link Acrobot robot system, 3
shown in Figure 1. All joints of the robot can be both actu- p(z, ') = Zd(9i,9§)-

ated and passive. The control input corresponds to torques a

=1



(¢) PCA RRT 14000 Iterations

(d) std RRT 2000 Iterations (e) std RRT 8000 Iterations (f) std RRT 14000 Iterations (n) RRT 14000 Iterations - 3D

Fig. 5. APP mode: (up) The coverage of the configuration spgdhdPCA -based approach for incrementally larger number of iterati¢ciown) The
standard RRT. The last column corresponds to a view from ardift 3D viewpoint for both algorithms.

Unless otherwise specified, the figures in this paper disple
a projection of the trees in the C-space=£ (61,62, 03)). 7
Note that the angle®; are relative the global reference <\
frame and do not correspond to the angles between cc °
secutive links. In the configuratiof0, 0,0) all the links of
the Acrobot are horizontal, pointing towards the right. Ar
Acrobot in the up-swing configuration has a configuration o
(%, %, %) Furthermore, the figures display only the node:
of the resulting trees. For the Extend function, the value
k =10 andt = 0.2sec were used in the experiments. The
algorithms have been implemented on MATLAB and teste ,
on a machine with Intel 2.0 Dual Core CPU and 2GB RAM +

2

B. Evaluation

Coverage in APP modeThe algorithms were tested on
different modes of the Acrobot starting with the mosi
underactuated case (APP mode). Figure 4(up) shows t
performance oRRT- Connect with 1000 nodes, where the

exploration is severely constrained to one direction. fuFe
P y u Fig. 6. AAA mode: (up) Coverage for the standard RRT algorithiong

4(d0Wﬂ), the exploration is better distribute_zd when us?@\ the #; and 3 orientations after 5,000 nodes (left) and after 50,000 aode
for the same number of nodes (1000). Figure 5 provides aiight) - (down) Similar results after theCA-based modification.

incremental comparison between the standafdl and the

PCA-based solution. Moreover, the computational overhead
for the transformation and modification step is very low a”‘é:overage in AAA modeThe second test case
does not exceed on average 1.15% of the time spent by the,

involved
Acrobot in AAA mode. The results are shown in

standardRRT. The table below shows the average duratiorf;igure 6, where the top figures correspond to the coverage

and the associated variance of building trees with 1000$10d

Berformance of the standard RRT and the bottom ones to

with the standardRRT and with thePCA-based RRT, over o pca-hased modification. As it can be seen, after 50,000

100 experiments on MATLAB.

nodes the proposed modification manages to cover most of
this projection ofX.

Computation time Average duration| Variance
StandardRRT (seconds) 5.731 0.13
PCA- basedRRT (seconds) 5.797 0.137 Comparison:Table Il is a summary of the above and similar
TABLE | experiments. It displays the number of nodes necessary for

TIME TO COMPUTE A TREE WITH100ONODES IN SECONDS

different algorithms and different modes of the Acrobot to
solve a planning challenge. The planning problem required



StandardRRT (iterations) | PCA-basedRRT (online iterations)
AAA 46.8 K 17.3 K
AAP 52.1 K 26.3 K
APP Failed (>120,000) 96.9 K
TABLE I

AVERAGE PERFORMANCE STANDARD RRTVS. PCA-BASED RRT.

Fig. 8. The directions of the principal component after ragrPCA on
different trees computed with the standdRRT(blue for least principal
component). In all of the above cases, the vector for the lpastipal
component points in a similar or in a negative direction. ONethere is
not significant deviation between the bias detected by therihm.

components from this experiment. Red lines indicate the

first principle components for eacRCA run. Green and

Fig. 7. The three principal components for different sizethefsame tree blue lines indicate the rest of the principal components.

as it expands using the stand&BT algorithm. While the mean of the nodes changes as the tree grows, the
direction of the eigenvectors does not change significantly

i And even the mean changes only along the direction

27272 a%f the principal component, which does not effect the

denoted by the black asterisk in Figure 4. The goal w onosed algorithm. Similar results have been achieved
considered achieved regardless of the velocity of the Byst P _aigorithm. - Simi esu v _achiev
over multiple experiments, which due to space limitations

at the vertical position and if the planner was able to preduc L

a configuration within five degrees of all the angles. As figur%lre not prgsented here.' Overall, there are indications .that
6 exhibits, this is a hard problem for sampling-based plesine or dynamlcally_ gonstralned system_s a small . ex_plorat|on
as it requires extensive exploration in order to cover thgee may be sufficient to grasp the major constraint influence

space. The part of the configuration space which corresponds i ded Iso indi
to the goal is the last to be reached by the algorithm. F&IOW many offline trees are neededhere are also indi-

the PCA-based solution, an offline tree was extended usin ﬁ}!ong that rur;]ntlng:’CA ci\r/]er a' smalll number  of trses
the standardRRT algorithm for 2,000 iterations. Ine Is enough to grasp the principal components. Figure

Note that for these problems, the more the links of th shqws an example_ with the principal component Computed
acrobat weigh the more difficult the problem is. For th or d.|fferent trees using the standaRiRT on the constralned_
AAA mode, the absolute value of the input torque wag rsion of thg problem (AP.P)' The resuilting vecFors areaqgn
limited to 20Nm, while for the APP mode it was limited similar meaning that the dlfferencgs on the on_hng opematio
to 30Nm. For the AAP mode, the first joint has a limit Ofof the te_chnlque Woul_d not be_ significant. Similar results
30Nm and the second one has a limit of 20Nm. As th&'€ acquired for experiments with a much larger number of

table shows, more difficult problems (i.e., APP is mud{rees than the one depicted on Figure 8. Furthermore, note

harder than AAA) require more iterations to be SolVedt_hat in all of the previous experiments and comparisons only

In every case, however, theCA-based solution performs one oﬁlipg treg was used during the training session. This
always better than the standaRRT even if the offline was sufﬁment. n ordgr to get the improved coverage and
cost is included to the cost of thPCA-based solution performance in planning.
(2,000 iterations). This provides some evidence that we caQ
take advantage of such offline information to considerably”
improve state-space coverage performance. The proposed approach has also been tested on a different
system other than the Acrobot. In particular, a secondforde
How large offline trees are needed®periments indicate car-like system has been chosen with state-update egsation
that it is possible to grasp the effects of the dynamic
constraints at the beginning of the exploration process

the robot to move from an initial configuration ¢#,0,0)
with zero velocities, to a vertical position f%, %, Z),

Second System: Car-Like Vehicle

= w cosC cosb x € [—150, 150]

with a small number of nodes. In order to investigate this Y= wcosCsind  y e [—150,150]
issue, the following experiment was executed. A tree was 6 = w sind 0 € [—m, 7]
expanded using th&RT algorithm up to 5,000 iterations. W= u w e [0,4]
Every 1,000 iterations thd®CA algorithm was executed . o

to compute the principal components given all the nodes (= U2 Ce [—g>g]

produced up to that point. Figure 7 visualizes the principal



w=0 500 nodes| 1K nodes| 3K nodes| 5K nodes : . . .
StandardRRT oo0i8s7 | 0045 | 022378 | os3a7a| <average variance metric achieved over 10 experiments. The

PCA on same sizel _0.01453 | 0.04786 | 0.12898 | 0.28111 standard deviation for the variance metric is quite low.ibiot

PCA on 1K nodes 0.10724 | 0.21055 | that in the majority of the cases tHeCA-RRT achieves
wd:2 500 nodes| 1K nodes| 3K nodes| 5K nodes| |ower variance for the same tree size. This means that it
StandardRRT 0.01368 | 0.03482 | 0.21007 | 0.49757 ;
SCAon same Sza— 00137 T 002837 T 0.12751 032256 _explore_s the C-space more evenly. The comparison becomes
PCA on 1K nodes 0.13136 | 0.26946 increasingly more favorable for larger trees. Furthermore
P 500 nodes| 1K nodes| 3K nodes| 5K nodes| If the tree used for offline learning is smaller than the

StandardRRT 0.012807 | 0.03034 | 0.17893 | 0.44894 constructed tree, there is no degradation in performanoe. O

PCA on same size] 0.01077 | 0.02698 | 0.12814 | 0.32617 | the contrary, it appears to be beneficial in terms of coverage
PCA on 1K nodes 0.13404 | 0.32699

TABLE Il
VARIANCE OF DENSITY IN CELLS IN THEC-SPACE V. DISCUSSION

where w; and uy, are the control inputs (acceleration and
derivative of the steering angle correspondingly)y are the ~ This paper presents a method that utilizes Principal Com-
Cartesian coordinates of a point on the rolgids orientation, Ponent Analysis RCA) to improve the coverage efficiency
w is the forward velocity and. the steering angle. The of sampling-based methods in the presence of dynamic
bounds for the state parameters are also provided in theeab@@nstraints and underactuation. An offline step is executed
equation, from which it becomes apparent that the car cdfist so as to learn the major influence from the constraints
only move forward. The bounds for the control parametergsing PCA. A modification to the online step of the popular
are as follows=—0.03 < u; < 0.03 and—0.06 < uy < 0.06. RRT algorithm is also presented that introduces a counter-
This is a system that is not small-time locally controllableneasure to the bias and balances the overall exploration
everywhere and given the above bounds has significant drifif the state-space. The approach is tested on a typical 3-
The distance measure used was the followings (z; — link Acrobot system with varying levels of actuation and
To) + So % (Y1 — o) +53% (A1 — 02) + 545 (wy —wy) +55% @ second-order, not small-time locally controllable dlag-|
(¢1—C2), wheres; is a scaling factor for each state parametesystem. The experimental results indicate that it is pdessib
and depends on the bounds for the corresponding parameti@$enefit from the application of theCA. The coverage of
(51 = s9 = ﬁﬂgg — i”% — i’% = Z). As with the the state-space is improved and the cost of finding a solution
Acrobot, special care has to be taken when considering tf specific planning challenges is reduced. There are also
difference in orientation. The PCA was run on a projectio®xperimental indications that for the tested systems desing
of the states onto the C-space of the system, which in thignall tree is sufficient for offline learning.
case corresponds (@, y, 9). In the presented worlPCA is used in a global fashion
Figure 9 provides a comparison of the different kindand only once. Future work will focus on executiRfA
of trees that result after the application of the standardnline, as well as locally. An online variant would hopejull
RRT and thePCA-basedRRT on the car-like system. Both be able to adapt to the changes caused by the modifications
algorithms were applied for 2,000 iterations. The initialto the algorithm, since ondeCA is used, the algorithm is no
state corresponds to the car-like system having its maximulonger exhibiting the same kind of bias as the offline tree.
velocity (w = 4). The result of thePCA-based outcome is A local approach brings the promise of being able to better
using the principal components learned from a tree of sizpproximate the underlying non-linear bias by decomposing
2,000 nodes expanded by stand&f[IT. the space into regions where the bias may be varying.
In order to quantitatively estimate the coverage, a disAnother way to address the underlying non-linearity of the
cretization of the C-space was employed. Each dimension physical system is to consider more sophisticated methods,
the C-spaceu, y, 0) is divided into 50 intervals. This results such as Isomap/LLE, and in general non-linear dimensional-
into the definition of50 x 50 x 50 cells into the C-space. ity reduction algorithms. An important issue, especiatly f
Initially the density of each cell is zero and increases everhigher-dimensional challenges, is to use B@A process so
time that a node of the tree lies on the cell. A tree that covess to identify a projection of the complete state space that
nicely the state space should result into cells with reddyiv should be used for more effective planning. For example, in
equal densities. Thus, a metric of the C-space coverage is tifie current experiments the distance metric andP@ia are
variance of the density over the cells. For the same size tremmputed on a projection space that ignores the velocities,
the lower the variance the better. For the example in Figuisince the goal is specified in terms of the joint angles. In the
9, the variance of the density achievedRiT is 0.15, while general case, however, it might be possible to automaticall
the PCA alternative achieves 0.07. identify the appropriate projection of the complete statece
Table Il provides the variance of the density of cells forthat is sufficient to cover using theCA adaptation. There
trees of different sizes (500, 1000, 3000, 5000 nodes), ftras been recent work on the performance of random linear
different initial conditions (velocityw = 0,w = 2,w =  projections for sampling-based motion planning [39]. Hina
4) and for different algorithms (standaf@dRT, PCA-RRT  future work will also deal with how the information collecte
using learning on a tree of the same size &@A\-RRT through aPCA procedure can assist the online solution of
using learning on a tree of 1,000 nodes). Each value is thpgoblems that involve obstacles and collisions.



Fig. 9.
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Trees with 2000 nodes projected on they plane. They are computed with the standBRIl (left) and thePCA-based solution (right) for the

car-like system. The initial state i, y,0,w, ) = (0,0, 0,4,0), which means that the car has its highest velocity in theaingfate.
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