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ABSTRACT OF THE THESIS

Identifying features of legible manipulation paths

By MIN ZHAO

Dissertation Director:

Professor Kostas Bekris

This work performs an experimental study on the legibility of paths executed by a
manipulation arm available onBaxterrobot. In this context, legibility is defined as the
ability of people to effectively predict the target of the arm’'s motion. Pathartha
legible can improve the collaboration of robots with humans since they allow people to
intuitively understand the robot's intentions. Each experimental trial in this study
reproduces manipulator motions to one of many targets in front of the rabot. A
appropriate experimental setup was developed in order to collect the responses of people
in terms of the perceived robot's target during the execution of a trajectory by Baxter. The
objective of the experimental setup was to minimize the cognitive lode duman
subjects during the collection of data. The extensive experimental data provide insights
into the features of motion that make certain paths more legible for humans than other
paths. For instance, motions where the-efielctor is oriented towds the intended
target appear to be better in terms of legibility than alternatives.
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1. General Introduction

1.1. Human-Robot Interaction

HumanRobot interaction (HRI) focuses the interaction processes between human
androbot.Before becoming as a research topiamanrobot interaction as an idea had
been pointed out by Isaac Asimov (1941) in his short fiction story. He stated three laws
of Robotics: A(l) A robot may not injure a
humanbeing to come to harm; (2) A robot must obey any orders given to it by human
beings, except where such orders would conflict with the First Law; (3) A robot must
protect its own existence as long as such protection does not conflict with the First or
Secmd Lawo. Namely, an interaction between
interaction. As the robot and human beings getting closer, the risks that human beings are
harmed by the robot could increase. For descent of years, in order to avoid such risks,
human beings and robots were separated and not allowed to share the same workspace.

Recently, the increasing availability of levest, compliant and humdriendly
mani pul ators all ows robots, such as Rethin
proximity to human workers. Unlike traditional automation systems, which needed to be
kept in cages, these compliant robots can share a common workspace with human
workers. A clear benefit of this close proximity is the opportunity for cooperation
between a hunmaworker and an assistivebot.One important task for robots is to move
items that humans cannot reach. For example, robots may deliver food or water to a
person who cannot move due to age or disability. Another example is wardlaseske
robots. The wahousebased obots navigate within the warehouse, find the product and

transport it back to a human operator. In all situations involagsistiverobots and



humanbeings, there are two main directions to make the interaction safe and human

friendly: 1)Robot can better understand humansao i
appropriate actions; and (2) human beings
response appropriately. The first direction requires the cognitive models and theory of

mind of humanbeigs. The second direction requires
It is useful for thathe robot to be programmédimanfriendly so that people can
interpret the robotds action accurately. F
persont he person should be able to interpret
response about when and where to reach the cup. Accurate and timely interpretation of
robotso action will allow people to make b
software design of robots to provide more useful interactiims.current study focused

on the second direction, and examined how

just observing its actions.

1.2. Related Work
1.2.1. Legible Motion
In order tomakea robotplay an assistive rolefficiently, it is important that the
human is able to easily and quickly understand the robot's intentigaustb¥yserving its
actions. Ideally, this understanding will come in an intuitive manner, similar to how
humans are innately able to communicate with one anothewedpally when working in
close quarteraiVhen interacting with humans, robot has to adopt legible behavior, which
contains crucial soci al C U e slLegible thotienplgns e s s e s

are an important part of making the robot understandable by humaorkers



intuitively. In this context, the legibility of a motion corresponds to whether human
subjects can realizbée actual target out of many possible choices from the arm
movenent. Legibility could be improved from varies of aspects, such as improving the
safety by increasing the distance between human and robot [23], increasing the visibility
of all parts of the robot [23], minimizing the cost of reaching of human beings [23],
explicitly expressing the intention of the robot by making the robot looking at the target
[24], etc.

Previous work has emphasized the importance of anticipatotipn [2]. The
robotdés actions could be easily r@abyd qui ckl
using alarms, such as symbol, noise, particular social representative components, at early
stage of the motiarit has also been indicated that legible, anticipatory motion greatly
assists in collaborative tasks.

Research has also focussuexploitng the repeatability of common
collaborative tasks to generate anthropomorphic motions [3]. There has been work on
creating metrics that can reproduce motion plans to be more Hikad4]. Another
philosophy in generating motion plans has been lealsyrdemonstration. Motions, that
are demonstrated by human teachers, are used to build the policy for the robot to map its
state to an appropriate motion [5, 6]. This line of work leverages anthropomorphic
motions. The legibility problem, however, does netessarily correspond to the
capability of a robot to reproduce hurdigge motion, but how a human perceives the
robot's motion.

This crucial motivation has resulted in recent important efforts in identifying

aspects of and generating legible robot mofig 8], which have inspired and influenced



the current work. The legible motion was defined as the motion that enables an observer
to quickly and confidently infer the correct goal (acttorgoal), while the predictable

motion was defined as the motithrat matches what an observer would expect, given the
goal (goalto-action). In particular, these efforts have resulted in a formalization of robot
motion legibility, and approaches for autonomously generating legible robotic motion
plans. They stated thte legibility motion generator should always find the maximum
probability among candidate goals along the paths from the start location to the target.
And there is a trust region that constraint legible motion to make it understandable. They
listed numbes of factors that could influence the understanding of legible trajectories,
such as ambiguity, scale, timing, numbers of possible goals, and obstacle. Further work
by the authors along this line has focused on distinguishing between predictability and
legibility. Researchers tried to compare liggible motion and the predictable motion in a
two-target situation. Predictable motion was defined as the motion that matches what an
observer would expect, given the goal (gmehction), which appears as lomnast, less
surprise and more efficient trajectoriésthe corresponding experimental process the
focus was on discriminating the legibility of motion usangimulated point robotjdeo
recordings of a robpaind human actotbat can potentially reach two goals in an

otherwise uncluttered workspadéey found subjects tend to make correct estimations
faster and more confident with legible motion than predictable motion, particularly for
the simulated point robdEamiliarizaion [9] has been shown to improve predictability

when coupled with learning.



1.2.2. Human Motion

Human beings are good at interpreting actions and relative intentions of other
moving agents in their environment. This ability is developed during théduteen
months of a person'’s life [10]. During dalily life, there are usually two action
interpretation processes [11]:

1. Actionrto-Goal inference, in which people try to predict the result of the action
based on the information accumulated during thiemals execution.

2. Goalto-Action inference, in which people try to predict a type of action that
could achieve a determined goal

The focus of legibility is on understanding actitwrgoal inference, namely how
humans interpret the observed actionsthed discover the underlying intention [7].
Adults, young children, and even infami® able tselectively focus on the key
components of the behavior of others, which is relative to their intention. In
psychophysical experiments the human hand was\dsed to play a crucial role during
interpreting and sharing actions and intentions of pewjleothers [12, 13]. Previous
psychological studies show that between nine months and twelve months, infants develop
a perceptual link between pointing to theget object and the target, itself. They
understand that pointing is an objeciented action [13]. These results motivate the

focus of this study on features related to the robot'seéfedtor.

1.3. Current Study z Perceiving the action of the robot
The goal of the current studyas to identify the key features of robotic motion

for manipulators that contribute toetr legibility. Rve different types of trajectoriegere



generated tgover a variety of discriminant legibility features. Some of thaufea
correspond to arm policies, such as the shortest path in the configgrzm®) and other
cor r es and'd.e. terffettor, policies, such as the orientation of the-end
effector relative to the targeA humanrobot faceto-face experimentvas setup to
examine how human perceive the goal of the robot by observing its arm action. In the
experimentfrajectories werexecuted by two seven degredsreedom manipulation
arms that werenounted on a Baxter robot. The arms nubtevards graspingultiple
targds, which wee positioned linearly in front of the robot. As the manipulator moves,
human subjects obsexvéhe robot and repagtitheir belief regarding the intended target
of the arm. An appropriate experimental setup was developed intorcigtect these
responses, so as to minimize the cognitive load of the human subjects and achieve good
accuracy.

The experimental results show that the legibility ofediéht trajectories was
indeed different and consistent across different targetsoMotvhich allovedthe end
effector to point towards the intended target and move along a straight line in the
workspace result in enhanced legibilitihe learning effect was also examined by repeat
testing trajectories.

The lorg term objective of identyfing these legibility characteristics is the design
of motion planners that incorporate these features into the planning process so as to
automaically generate legible motion, and thagsrobots, which can generate legible

motion plans, can more effectlyecollaborate with humans.



2. Generating Different Manipulator Paths

Two main factors were considered as key features of the legible trajectores for
dual arm manipulator, i.e., a Baxter robot by Rethink Robdflog. is the path from the
startposition to the target location (arm policy). The other is the orientation of the end
effector (hand policy). For the path from the start position to the target lochtoe,are
four arm policies considered in this study:

1. Shortest path in configurath space (i.e., minimizing change in joint angles),

2. Overhead motion frequently appearingipick and place" paths,

3. Shortest, straighline path for the eneffector in workspace, and

4 . Curiied" path for the endffector in the workspace to exaggerate intent (see
Fig. 1a).

a. Curve Trajectories b . Straight Trajectories

—em -~z =oO

POTWOOMTMEOI-—cXx ~Z =0
commaezx

Figure 1. Left(a) : fAcurve" and Center(b): Astraight" p
side of each plot represent the starting position for théeft (red) and right (blue) end-effector. The

lines show paths to reachable targets. Each hand has its own reachable region (green curve for right;

purple curve for left hand). Right(cone of the fAoverhead" pat4hs in si mu
effector remains vertical and points downward.

And there were two possible hand orientatiqgeténtial hand policigs
1. Hand goes immediately to final joint position (e.g., overhead grasp) and stays

there for the duration of the motion, and



2. Hand points towardhe goal in the workspace at all times. The pointing feature
of these paths can be seen as a symbol generating anticipation of the motion [2].

By combining the above mentioned policies and pruning incompatible
combinations, five different classes of patére considered in the experimental study:

1. AShor t ewasthe shpdest path inTthe comfiguration space computed
on an asymptotically neaptimal version [1516 of a probabilistic roadmap 1 in the
Open Motion Planning Library Bl. This classwas resulted from arm policy 1 (Fig.)2a
and immedately provideda path for the hand as well.

2. AOver head Down" pat h: @ndplaceétasksby o pat
Baxter robots in industrial settings, where the-effdctor move in a positon over the
target and points downwards throughout the motion (see Fig. 1c). Thisvelssssulted
from the combination aéirm policy 2 and hand policy fig. 2v).

3. AStrai ght" ¢@iséendeffeciohatngra bnbao path fromthe
initial position to the target object while the end effector maltdwards the target (see
Fig. 1b). This claswas resulted from the combinationasfn policy 3 and hand policy 2.
(Fig. 2c)

4 . A St r @ paghhThe r@ébot moves its end effector along a linear path
from the initial position to the target object while the end effector remains in a vertical
orientation pointing down. This clagss resulted from the combinationarin policy 3
with hand polcy 1. (Fig. 2i)

5. ACurved" path: The robot moves its e

path while pointing at the target. This class is inspired by ideas in previous work towards



generating legible paths [7] (see Fig. 1a). This chessresultedrbm the combination of

arm policy 4 combined with hand policy 2. (Figp) 2

‘L x..'x( t k{( % “-*t " ».(\

Figure 2. Left to right: 1: Shortest C-space path, 2: Overhead down, 3: Straight pointing to target, 4:
Straight down, 5: Exaggeratedicurved" motion pointing to target

Both hands were tested in the experiment, so trajectareesgeneratedor both
handsof the robot. For each arm and for every type of trajectory, a fixed start position
thatwas raised from the aest position of Baxter is used. It hetfin terms of target
reachability. The targets are placed evenly along a line on a table in the manipulator's
reachable workspace (see Fig, ld). For each target, one unique trajectory was
generated for each trajectory class. Left hand can only reach 5 targets on itle,left s
while right hand can only reach 5 targets on the right side (see Fig. 1a, b, for reachable
range of each hand). The left 5 possible targets were not overlapped with the 5 ones on
the right. In total, there were 50 unique trajectories generated jpmeparing process.

The above set of trajectories wdesigned to avoid confounding the effects of
hand policies with the effects of arm policy, while keeping the total number of
trajectories to a reasonable number so as to baabiesh testing and asell to extract
useful conclusions. Note that there are two types of trajectories that are sharing the same

9
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arm policy (straightine for the end effector in the workspace) but are different in terms
of the employed hand policy. There are also two couotesises, reflecting stdard
mani pul ati on st r atedapddown"t(ajgectohies)rIn tkissway, thea n d i
relative importance of these features can be discovered by comparing the time it takes for
human subjects to realize the motion's target.

To ensure that for all classes there is ample time for subjects to givééekd
about their belief of targets, all trajectories in this study are scaled to be performed in 8

seconds.
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3. Human Robot Interaction Experiment

A humanroboti nt er acti on experi ment was run in
perception and interpretation of the robot
3.1. Methods

3.1.1. Subjects

Thirty subjects were tested. All of them were paid volunteerssudjects had
normal vision, hearing condition and were naie as to the purpose of the experiments.
The procedures were all approved by of the Rutgers University Institutional Review

Board for the Protection of human subjects.

3.1.2. Design

There were 5 different types of trajectories (see details in seqtidih@
trajectories were stored and played back during the trials in order to ensure that artifacts
from the random sampling in our motion planning do not cause discrepancies between
trials of the same class to the same target. Moreover, the overhead of planning for the
execution for the trajectories was avoided by generating the trajectories once and
replaying them. For each of the workspace
[19] is used to perform linear interpolation among a series of points in the workspace.
Then, the Movelt! Packad20] with a KDL kinematics solvej21] and an OMPL[18]
implementation of a PRM* variant is used to plan trajectories between the interpolated

points.The final trajectories can be played on thieatousing the Baxter RSDK [1]

11
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Both hands (left and right) of the robot were tested. The experimental setup is
designed to effectively record the respons
trajectories executed by the robot. A requirement was that both the targets and the robot
were within the view of the subjects. The subjects also had a clear view of the entire
motion of the robot manipulators. For studying legibility, the subject must be able to pay
attention to the motion of the robot without distractions. Minimizing the cognitive load of
the subject during the experiment involves minimizing distractions as well as making the
data recording interface intuitive and effortless. In order to achieveathiefficient
recording mechanism is desired, which is both accurate in recording the responses and
easy to assemble. The recording interface should also be resilient enough to withstand
repeated experimental trials. The experimental setup consisBaoter robot, a
workstation, a table with 15 colored cups, and a pointing delige3. Among the
cups, the 10, that can be reached by the robot from its starting position with all 5 types of

trajectories, were designated as potential targets.

F LN YT T T T

Figure 3. (left) The start position of the trajectories on the Baxter robot during the experimental
setup. (right) A view of the pointing device from the subject's perspective.

12
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A pointing device was designedoittimy bett e
device is fixed to the spindle of a linear potentiometer. The edges of the resistive track
are then connected to the 5 volt and ground pins of an Arduino device and the wiper to an
analog input pin. An Arduino device sketch then performs the sagesalculations to
extrapolate from the wiper voltage the position along the line of targets at which the ray

of the pointer will intersect. This distan

3.1.3. Procedure
During the experiment, Subjects weseate@round 15&m in front of the Robot.
There was a table located between the subject and the Robot. 15 colored cups were

placed on the table.

For each trial, subjects pressed the fis
themto startthetrial®@ce t he trial started, they heard
the |l eft arm would move, or a ABuzzo sound

sounds alert the subject regarding which are they should direct their attention toward.

Then the roboplayed the trajectory from its starting position to a selected target, which

has been scaled to run in 8 seconds. Subjects were asked to continuously guess which cup
was the target that the robot was trying to reach, from the beginning of the trial to the

point when they were very confident with their estimations. Subjects used the pointer in

the pointing device located in front of them to indicate their belief of the target of the
robotés motion. The position ofogtogbtleer poi nt i

with the target number and the class of the trajectory. The pointer position was recorded

13
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till the end of the trajectory (8s). After
returned to a start position which is common to all the trajestofhen the subject was

shown the number of trials that haven been completed, and was prompted to press any on
the keyboard to continue the next trial.

Each subject was tested in 3 blocks. Each block contained 50 trials. For each
subject, three randonmepmutations of the 50 recorded trajectories were generated using a
python script. There were 50 different recorded trajectories (2 hands * 5 possible targets
for each hand * 5 different trajectory classes), thus each playback trajectory was played
one timeand only one time in each block. The trajectories of each permutation are then
executed in order, recording a log of the trajectory filename and pointer position, with
time-stamps, captured from the Arduino during the playback of each trajectory. In this
manner it is possible to ensure even coverage among the classes and targets while
minimizing the chance of subjects guessing the target through means other than visual
perception of the robotds motion.

After each block of 50 trials, which forms a permiatatof the full set of
trajectories, the subject was given a mandatory two minutes break. These breaks allowed
the subject to rest, and to maintain attention on the perception task. Each subjects
participated in the experiment only once, in order to coetyee perception of base

legibility of the paths and the learning effects among subjects.

14
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Figure 4. Examples of pointer traces for randomly selecteéhdividual subject. Grey represents target

area.
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3.2. Results

The pointer can only be moved in one dimensiam horizontal direction. For
each trial, the horizontal positions of the pointer were recorded from the beginning to the
end of the trialThe pointer position was averaged in a 160ms window, so that there were
50 position points along &gajectorylength.Fig. 4 shows the examples of pointer traces
for a randomly selected individual subject. It includes the examptaadd for each
individual trial Grey areas represent the correct target area. Three traces were from three

blocks that subject ran.

3.2.1.Predicted Target over time

The root mean square of the distance between the pointer and the correct target
reflects the subjectds prediction of the
within subjects, and then across all subjects. Figo®shhe root mean square was
varied for different types of trajectories at the beginning and converged to the correct
target location in the end over a normalized time scale. The convergence was fast during
the middle range of trials (0@ 7) for all tragctories. The predictions for the shortest
trajectory were further away from the correct target than for the other types of
trajectories, which was consistent with the results of root mean square.

The pointer velocities (Fig. 6) which was how fast subjsutsed the pointer,
were peaked at the middle {8) range of trials. It again shows that the shortest type was
different from the other four. These results suggest that the subjects might not able to
predict the target during the early parts of the €sbtrajectories as well as the other

types. Frequently during the shortest paths, theedfiedtor was overshooting the target

16
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and then returning back to it, which complicated the interpretations of the motion even

close to the completion of the path.

Right Hand (Target 3,4,5,6,7)

Root mean square of distance from the target

0 02 04 06 08 1
Normalized Time

Root mean square of distance from the target
N

Left Hand (Target 9,10,11,12,13)

—shortest
— curve-pointing

— straight-pointing

— overhead-down
~— straight-down

\

02

06 08

Normalized Time

Figure 5. Root mean square of distance from the target along the normalized time scale for five types
of trajectories: shortest (black), curvepointing (blue), straight-pointing (red), overheaddown (pink)

and straight-down (green).

Right Hand (Target 3.4,5,6,7)

shortest
cunve-pointing
straight-pointing
overhead-down
straight-down
0 02 04 06 08 1
Normalized Time

pointer velocity along the time
FiN

pointer velocity along the time

12¢

10

Left Hand (Target 9,10,11,12,13)

02

06 08 1
Normalized Time

Figure 6. Pointer velocity along the normalized time scale for five types of trajectories: shortest
(black), curve-pointing (blue), straight-pointing (red), overheaddown (pink) and straight-down

(green).
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3.2.1. Reaction Time

In order to compare different types of trajectories in more detail, we further
examine the reaction time of subjectsd res
the start of the trial to the point subjects made a corresponding decision. Fig.tArplots
types of reaction time (RT):

(1) RT of converging to the range within 2 cups away from the target (Fig. 7a),
which happened at the beginning of trials;

(2) RT to converging to the range within 1 cup away from the target (Fig. 7b),
which happenedtdahe middle range of trials; and

(3) RT to converging to the target itself (Fig. 7c), which happened at the late part
of trials.

Data from three blocks were presented in the order from left column to right
column. In general, the straigpointing type(red bars) was always the best. The curve
pointing (blue bars) was the second best. And the shortest type (grey bars) was worst,
especially when converging to large error range (2 cups away, or 1 cup away from the
target). Onavay ANOVA test shows that the were significant difference among
different types of trajectories for all groups (Table 1, F scores and p values).

First, |l etds just |l ook at the block 1 (plo
trajectory was first presented to subjects. Thépeance to the shortest (grey bars)

type was always the worst when converging to all types of error range. The disadvantage

of the shortest type was obviously when converging into relative large error range (2 cups

or 1 cup away from the target). Pairwg@mparison shows that it is significantly longer

than the other four types (Table 1). This disadvantage decreased when approaching to the
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correct target finally. It suggests that the confusion of the shortest type usually appeared

as the early stage oféhrajectories.

a Time taken to converge to correct target

® Curve Pointing @ Straight Pointing ® Overhead Down ®Shortest @ Straight Down

“ ] wlll ol

block 1 block 2 block 3
b. Time taken to converge to within 1 cup deviation

2 ﬁ.l' I.
=
Nl B -_ﬁﬁ- |

block 1 block 2 block 3

c. Time taken to converge to within 2 cups deviation

il mlli

block 1 block 2 block 3

Figure 7. Reaction time (RT): the time converging to (a) the correct target; (b) 1 cup away from the
correct target; (c) 2 cups away from the correct target. There were five different types of trajectories:
curve-pointing (blue), straight-pointing (red), overheaddown (pink), shortest (gray) and straight
down (green). There were three blocks of 50 trajectories in order: block 1 (left), block 2 (middle) and
block 3 (right). The error bars represent-/+ 1 standard deviation error.

The reaction time for the straigptinting type (red bars) was significantly
shorter than the others when converging to the range 1 cup away from the target and to
the target, and it is marginally shorter than the others when converging to the range 2
cups away from the target. The cupanting was always longer than the straight

pointing but shorter than the rest three. It means that the stpaigting is the best, and
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the curvepointing is the second best among all five types. The easiness of understanding

the straighfpointing and tke curvepointing trajectories could be due to the fact that end
effector (robotds hand) was al ways pointin
previously reported as an i mportant cue in
The advantags of the engffector pointing to the target were strongest when converging

to the range 1 cup away from the target. It suggests that the characteristics-of curve

pointing and straighpointing helps people understand the intention of the robot by

convergng to the smaller error range more quickly.

Table 1.0ne-Way ANOVA analysis for RT of 2 cups away, 1 cup away and pointing to the target for each
block. In each cell, the values in the first row are the core (pvalue). The second row lists all pairnge types
which are significantly different from each other from posthoc test ( Curve-pointing; 2- Straight-pointing; 3-
Overhead-down; 4- Shortest; 5 Straight-down).

Block 1 Block 2 Block 3

5.2 (<.01 8.34 (<.001 11.37 (<.001
target 24(2] ) 1-5; 2(-3; 24) 2-5 1-4; 1-(5; 2-3;)‘2.-4: 2.5
1 cup 16.74 (<.0Q1) 14.38 (<.001) 14.91 (<.001) )

1-4; 1-5; 2-3; 2-4; 2-5; 3-4; 5-4|1-4; 2-3; 2-4; 2-5; 3-4; 5-4|1-4; 1-5; 2-4; 2-5; 3-4
2 cups| T3 (<:001) 7.61 (<.001) 3.3 (=.013)

1-4; 2-4; 3-4; 5-4 1-4; 2-4; 3-4; 5-4 2-4; 5-4

The fpaoairvteingo did not pepbdbonmi agoweWwhi
wassurprising given the conclusion of previous studies [7]. It could be due to the
difference between two targets setting in previous studies and multiple and crowded
targets setting in the current experiment. With multiple targets in a crowded environment,
the curve path was more likely to confuse people, rather than providing legibility

information.

20



21

The overheadlown was the third most legible trajectory and it was better than the
straightdown. It also makes sense, because whenever the oveltwadrajectories
reached to the top of the cup, subjects know the answer for sure. While the-sioaight
was still on the way to the top of the cup at the same time point. This leads to the
performance as similar reaction time when converging to 2 cupsug dway from the
target between these two types of trajectories, and shorter RT for the oveohead

when converging to the correct target.

3.2.3. Learning Effect

As we mentioned in the Method section, three blocks were tested for each subject.

In eachblock, every trajectory was randomly run and only run once. Fig. 8 shows that the
time converging to the target was decreased across blocks, which means subjects did
learn trajectories. The learning effect is larger from block 1 to block 2, than fromalock

to block 3. This could be because subjects were already well trained before entering into
block 2 and might get tired in block 3. Learning effect also varies among different types
of trajectories. The shortest type shows greater learning effect thatinéne in all
convergence situationki@. 8a,b,c).These results suggest that the shortest type was the
hardest one to be interpreted at the early stage, but it can be learned by more training.
Nevertheless, the learning does not allow it to reach tikiliey level of alternatives

such as tphoe nitsitnrgaoi gohatt h. Additionally, t

less variance in later blocks (block 2 and 3).
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a. The target b. 1 cup away C. 2 cups away

— curve-pointing

— straight-pointing 0.65

082 —— overhead-down :
: shortest

08 ]’ straight-down 06 04
078 — RGN 0.38

@
£ 076
=

0.84

0.74

0.72 032
07 045

0.68

Time
o
o
v [ -
Time
o
®

block 1 block 2 block 3 block 1 block 2 block 3 block 1 block 2 block 3

Figure 8. Learning effects reflected in reaction time, the time converging to (a) the correct target; (b)
within 1 cup deviation from the true target; (c) within 2 cups of the true target. There were five
different types of trajectories: curve-pointing (blue), straight-pointing (red), overheaddown (pink),

shortest (black) and straightdown (green). The error bars represent/+ 1 standard deviation error.

3.2.4. Performance for each cup

The understanding of different types of trajectories was also related tc#tietho
of the target. In order to better analysis different trajectories, we further examined
performance (mean position and pointer velocity along the time) for differentkigps.
shows the mean distance from the target for each cup and Fig. 10tkbqwesnter
velocity for each cup.

Comparing to cups located on edge of the target set (i.e. 3, 4, 12, 13), for cups
located near to the center (i.e., 6, 7, 9, 10), the mean distance from the target was more
easily to across 0 leved the opposite diredn (Fig. 9. As the subjects typically begin
with the pointing device centered, this suggests that subjects were more likely to
overshoot the target. The overshoot could be due to many reasons. For example, when
moving the pointer, people are more likedymove it fast and in a large range to roughly

approaching to the target, and then move it carefully and precisely to hit the target. So
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that, the overshoots happened more likely for center items, in which cases, the first step

of movements took the poimtever the target. The starting position of the robot is nearer

the edge cups than the center cups. The overshooting could indicate that they are

following the arm rather than predicting the target accurately. Subjects were more likely

to overshoot the tget for the shortest type. As we mentioned in above, during the

shortest trajectories, the eptfector was overshooting the target and then returning back

to it. The traces here illustrated subject

the lowest reaction times also demonstrate the least overshooting.

Mean Pos Target#3 Mean Pos Target#4 Mean Pos Target# Mean Pos Target# Mean Pos Target#
6 6 6 6 6
reference
5l 5 5 5 5 shortest
4 4 4 4 4 curve-pointing
straight-pointing

é 3 _§ 3 é 3 é 3 _§ 3 overhead-down
'g 2 'g 2 'g 2 'g oA 'g 2 — straight-down
a a a a %
| c 1 =i € S e
3 3 3 3 : 3
g0 €0 €0 €0 = €0

2] -1 -1 1 -1

-2 -2 -2 2 -2

g 05 1 % 05 1 2 05 1 B0 05 1 % 05 1

Normalized Time Normalized Time Normalized Time Normalized Time Normalized Time
Mean Pos Target#3 Mean Pos Target#10 Mean Pos Target#l 1 Mean Pos Target#l2 Mean Pos Target#13

3 3 3 3 3

2 2 2 2 2

1 /1\& 1 e 1 1 1
&0 ﬁ 50 5o §o &0
D1 34 @4 G 2
o Q o o o
s ciiP . s €2 c -2
o © © © o
g3 g3 g3 g3 g3

4 4 4 4 4

5 -5 -5 -5 5

-6 -6 -6 -6 -6

0 05 1 0 05 1 0 05 1 0 05 1 0 05 1
Normalized Time Normalized Time Normalized Time Normalized Time Normalized Time

Figure 9. Mean distance from target along normalized time scale for each cup (cup No. labeled on the
top of each plot). Five types of trajectories: shortest (black), curvpointing (blue), straight-pointing
(red), overheaddown (pink) and straight-down (green).
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Figure 10.Pointer velocity along the normalized time scale for each cup (cup No. labeled on the top
of each plot). Five types of trajectories: shortest (black), curveointing (blue), straight-pointing
(red), overheaddown (pink) and straight-down (green.

The mean position (Fig. 113) and the pointer speed (Fig-18) were examined

in each block separately, in order to see whether there was any adjustment of strategies

across blocks. It shows that the patterns of three blocks were similar. Fig flbts the

mean position of the pointer away from the correct target along the normalized time scale

in block 1 (Fig. 11), block 2 (Fig. 12) and block 3 (Fig..18ach plot represents one

target. There were five types of trajectories: Shortest (blaokyepointing (blue),

straightpoint (red), overhead down (pink) and straigbtvn (green)Each lines were

averaged the performance of 30 subjetke yellow dash line represents the correct

target. It shows that the overshoot phenomena did not redueger block. The

comparison across three blocks suggests the occurrence of overshoot might not due to the

unawareness of the possible target range for each arm. Fi pbts the mean position
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of the pointer away from the correct target along thenatized time scale in block 1

(Fig. 14), block 2 (Fig. 15) and block 3 (Fig. 16). Each plot represents one target. There
were five types of trajectories: Shortest (black), cypwmting (blue), straighpoint

(red), overhead down (pink) and straiglown (green). Each lines were averaged the
performance of 30 subjects. The yellow dash line represents 0 level. In all blocks,
subjects tent to move the pointer slow at the beginning, fast in the middle and then slow
again when approaching to the eBdbjectsadjusted the pointer more frequently in

block 3than in block 1, which appears as more serrated shapes on velocity plots,

especially for the shortest type.

Figure 11. Mean distance from target along normalized time scale for each cup (cup No. labeled on
the top of each plot)in block 1.
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