CS 344: Design & Analysis of Computer Algorithms
Spring 2017, Sections 5-7, 4 Credits

INSTRUCTOR: Bahman Kalantari, 444 Hill, Tel: (848)445-7297.
E-mail: kalantar@cs.rutgers.edu URL: http://www.cs.rutgers.edu/~kalantar/

LECTURE: M-W 5:00-6:20 PM, LIV TIL-254
OFFICE HOURS: W 10:00-11:00 AM; W 3:00-4:00 PM
Section 5 Recitation: Monday 6:55 - 7:50 PM, LIV LSH-B117
TA: TBA Office Hours TBA.

Section 6 Recitation: Wednesday 6:55 - 7:50 PM, LIV LSH-B115
TA: TBA Office Hours TBA.

Section 7 Recitation: Wednesday 8:25 PM - 9:20 PM, LIV LSH-B267
TA: TBA Office Hours TBA.

Prerequisites: 198:112 Data Structures, 198:206 Introduction to Discrete Structures II

Exams (No Makeup Exams!): Midterm I: Feb 15; (Spring break: Sat March 11 - Sun March 19); Midterm II (incremental): March 27 (Last lecture: May 1); Final: TBA (cumulative).

Grading Guideline: 0.15 (HW & Quizzes) + max 0.20 MIDTERM 1 + 0.20 MIDTERM 2 + 0.45 FINAL, 0.25 MIDTERM 2 + 0.60 FINAL. (Class and recitation attendance and class participation will also be taken into account in grading.)

TOPICS: The course will cover a large subset of the following

• Methods for expressing and comparing complexity of algorithms: worst and average cases, lower bounds, and asymptotic analysis.

• Searching, sorting. Lower bounds for comparison-based sorting; binsort and radix sort.

• Divide and conquer. Fast integer multiplication; recurrences; the master theorem; mergesort; randomized median and selection algorithms; quicksort; fast matrix multiplication.

• Graph search algorithms. Graphs representations; depth first search; topological search; strongly connected components. Breadth first search and layered DAGs.

• Greedy algorithms. Spanning trees and cuts, union-find and path compression; minimum spanning tree (MST) algorithms; randomized algorithms.

• Shortest Paths (SPs) in digraphs. Single-source SPs for nonnegative edge weights; priority queues and Dijkstra’s; SPs in DAGs; single-source SPs for general edge weights.
weights.

• Dynamic programming. Paradigm of SPs in DAGs; longest increasing subsequence; (approximate) string matching; integer and (0,1) knapsack problems; chain matrix multiplication; single-pair reliable SPs, all-pairs SPs; independent sets.

• Network flows. Max flow min cut theorem; bipartite matching; Menger’s theorem and disjoint dipaths. Global minimum cuts.

• Elements of NP-completeness & problem reductions.

• NP-hard problems. Approximation algorithms.
