We would like to solve recurrence relation of the type that often arise in Divide-and-Conquer algorithms.

\[T(n) = aT\left(\left\lceil \frac{n}{b} \right\rceil \right) + O(n^d), \]

where \(a > 0, b > 1, d > 0 \). We assume \(T(1) = c \), a constant.

We can think of \(a \) as the number of subproblems, \(n/b \) as the size of each subproblem. The quantity \(O(n^d) \) can be viewed as the cost of combining subproblems.

Theorem (Master Theorem).

\[T(n) = O(n^d), \quad \text{if} \quad d > \log_b a, \]

\[T(n) = O(n^d \log n), \quad \text{if} \quad d = \log_b a, \]

\[T(n) = O(n^{\log_b a}), \quad \text{if} \quad d < \log_b a. \]

Proof. For simplicity we will assume \(n = b^k \) and \(O(n^d) = n^d \). We may write

\[
T(n) = T(b^k) = aT(b^{k-1}) + b^kd = a(aT(b^{k-2}) + b^{d(k-1)}) + b^kd = a^2T(b^{k-2}) + ab^{d(k-3)} + b^kd = \ldots \\
= a^kT(1) + \sum_{j=0}^{k-1} a^j b^{d(k-j)}.
\]

Let

\[
r = b^d, \quad \rho = \frac{a}{r},
\]

Note that \(a^k = a^{\log_b n} = n^{\log_b a} \) and \(r^k = b^{dk} = (b^d)^k = n^d \). Thus we have

\[
T(n) = cn^{\log_b a} + n^d \sum_{j=0}^{k-1} \rho^j = cn^{\log_b a} + n^d \sum_{j=0}^{k-1} \rho^j.
\]

It is now a matter analyzing \(S = n^d \sum_{j=0}^{k-1} \rho^j \) for different values of \(\rho \).

\[
\begin{align*}
\text{If} \quad d > \log_b a, \quad \text{then} \quad r > a, \quad \rho < 1 & \quad S = n^d \frac{\rho^k - 1}{\rho - 1} = O(n^d) \\
\text{If} \quad d = \log_b a, \quad \text{then} \quad r = a, \quad \rho = 1 & \quad S = O(n^d \log n) \\
\text{If} \quad d < \log_b a, \quad \text{then} \quad r < a, \quad \rho > 1 & \quad S = n^d \frac{\rho^k - 1}{\rho - 1} = O(r^k \rho^k) = O(a^k) = O(n^{\log_b a}).
\end{align*}
\]