
Leveraging Smart Phones to Reduce Mobility Footprints

Stephen Smaldone† Benjamin Gilbert• Nilton Bila?

Liviu Iftode† Eyal de Lara? Mahadev Satyanarayanan•
†Rutgers University •Carnegie Mellon University ?University of Toronto

smaldone@cs.rutgers.edu bgilbert@cs.cmu.edu nilton@cs.toronto.edu
iftode@cs.rutgers.edu delara@cs.toronto.edu satya@cs.cmu.edu

ABSTRACT
Mobility footprint refers to the size, weight, and energy de-
mand of the hardware that must be carried by a mobile
user to be effective at any time and place. The ideal of a
zero mobility footprint is achievable by encapsulating per-
sonal computing state in a virtual machine (VM) and de-
livering it over the Internet to a locally-obtained computer
close to the user. In locations with poor Internet connectiv-
ity, the demands placed on WAN bandwidth can result in
unacceptable user experience. We show how this challenge
can be overcome by using nascent smart phone technology
as a trusted personal assistant called Horatio that serves as
a self-cleaning portable cache for VM state. Since most users
already carry cell phones for voice calls and texting, Hora-
tio does not increase the size or weight aspects of a user’s
mobility footprint — there is only a small increase in the
energy aspect. We have built an experimental prototype of
Horatio, and measurements confirm its ability to improve
user experience even with current smart phone limitations.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Distributed systems

General Terms
Design, Experimentation, Performance, Reliability

Keywords
Horatio, self-cleaning, portable, cache, smart phone, ISR,
OpenISR, Internet Suspend/Resume, mobile computing, vir-
tual machine, content addressable storage, CAS

1. INTRODUCTION
The term “mobile computing” spans many different ap-

proaches to accessing one’s personal computing (PC) state
on the go. Although“carry all the hardware you might need”
has been the dominant approach since the early 1990s, new
models of computing have emerged that allow users to carry
less by relying on hardware resources available at sites along
their path of travel. Carrying less hardware reduces a user’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’09, June 22–25, 2009, Kraków, Poland.
Copyright 2009 ACM 978-1-60558-566-6/09/06 ...$5.00.

mobility footprint: that is, the size, weight, and energy de-
mand of what must be carried to be effective on the go. The
holy grail of mobile computing is to combine a tiny mobility
footprint with complete confidence in the performance, reli-
ability and safety of precisely re-creating one’s PC state at
any time and place.

A “carry nothing and live off the land” approach is of-
fered by both thin-client remote access products, such as
GoToMyPC [1], and the Internet Suspend/ResumeR© (ISR)
approach [9, 13]. In thin client remote access, a server exe-
cutes application and operating system code while the client
only performs screen updates and user interactions. In ISR,
PC state within a hardware virtual machine (VM) is deliv-
ered from a server over the Internet for execution on local
hardware. The ISR approach is more network resilient: user
experience is good even with high network latency and jitter,
and disconnected operation is possible. These are important
considerations for mobile computing at planetary scale.

ISR’s zero mobility footprint comes at the price of large
VM state transfers. Even if this state is fetched lazily from
a server, it is likely to involve many tens or hundreds of MB
at startup, with further transfers during execution. This
results in significant startup delay (“resume latency”), and
slower execution (“slowdown”). When a user finishes work,
modified VM state has to be transferred back to the server.
In trusted environments such as home or office, the user can
depart without waiting for this transfer to complete. But in
public environments such as an Internet cafe, the prudent
user suffers a final delay (“suspend latency”). Resume and
suspend latencies tend to be more noticeable than slowdown.

In this paper, we show how the storage and Internet con-
nectivity of smart phones can be used to alleviate these ISR
limitations. Our design treats smart phones as trusted per-
sonal assistants that serve as self-cleaning portable caches
for VM state. We call such an assistant Horatio, allud-
ing to Hamlet’s trusted ally in Shakespeare’s play. An ISR
user can suspend his VM state to Horatio rather than di-
rectly to the server; similarly, he can resume from Hora-
tio. Even when Internet connectivity is poor, the physical
proximity of Horatio to the client ensures good connectiv-
ity between them: for example, a USB 2.0 cable or one of
the emerging wireless technologies such as Ultra-Wideband
(UWB). To reduce device vulnerability, Horatio opportunis-
tically uses cellular, WiFi or other networking technology to
asynchronously propagate modified VM state to ISR servers
while users are in transit. This self-cleaning aspect of Hora-
tio distinguishes it from approaches such as SoulPad [5] that
rely solely on passive USB storage, and are hence vulnerable
to device loss or damage. Horatio does not increase the size

or weight aspects of ISR’s mobility footprint because most
users already carry cell phones for voice calls and texting.
Only the energy aspect increases slightly.

We have implemented a prototype of Horatio that runs on
two currently-available smart phones: the Symbian-based
Nokia N95 and the Linux-based Openmoko Neo FreeRun-
ner. Measurements with this prototype confirm that current
smart phone technology is already adequate for improving
user experience in ISR settings. At the same time, our mea-
surements reveal significant inefficiencies and suggest im-
provements in the protocol stacks and software environments
of current smart phones.

This paper makes five contributions:
• It introduces mobility footprint as a fundamental at-

tribute of usability, and explores the merits of alterna-
tive approaches to improving this attribute in mobile
computing systems.

• It extends the well-known two-tier client-server archi-
tecture to include a smart phone as an intermediate
third tier that operates as a mobile self-cleaning cache.
This extension improves user-perceived performance
while preserving the classic two-tier architecture’s stre-
ngths in security, performance and manageability.

• It describes the design and prototype implementation
of a system with small mobility footprint that is based
on this extended client-server architecture.

• It demonstrates the usability benefits of this architec-
tural extension through extensive experiments on the
prototype implementation.

• It identifies specific improvements to current smart
phones to better serve as mobile self-cleaning caches.

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 present relevant background, provide motivat-
ing examples, and position Horatio within a taxonomy of
design choices. Section 4 presents the design and prototype
implementation of Horatio. Section 5 presents an experi-
mental evaluation of the prototype. Section 6 discusses some
open issues and future research directions. Finally, Section 7
concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 ISR Overview
As its name suggests, ISR emulates the suspend/resume

capability of laptop hardware. This is a well-understood
metaphor today, and one that applications and operating
systems already support. The difference is, of course, that
ISR allows one to suspend on one machine and seamlessly re-
sume on another. ISR achieves this functionality by layering
a VM-encapsulated computing environment, called a par-
cel, on distributed storage based on the client-server model.
A parcel corresponds to the entirety of PC state, including
CPU, memory, disk, and I/O devices. It thus includes a
guest OS, installed applications, and local files. Further dis-
cussion of these concepts and a summary of ISR evolution
can be found in a recent paper [13]. This work was based on
release 0.9.4 of the OpenISRR© platform, whose source code
can be downloaded from http://isr.cmu.edu.

2.2 Motivating Examples
To illustrate how Horatio can improve user experience,

we provide two hypothetical ISR scenarios that capture the
essence of real-world usage.

Figure 1: Oases of Connectivity

2.2.1 A Day in a Busy Professional’s Life
Jill is a young professional. On a typical morning, she

does homework on a desktop for her part-time MBA course
and then checks her e-mail before leaving for work. During
her commute, her parcel is suspended to an ISR server. At
work, she resumes her desktop session and has a productive
morning. Over lunch, she finishes her homework and then
downloads and watches an episode of her favorite TV sitcom.
After work, Jill meets friends at a coffee shop to view and
edit vacation pictures on a laptop loaned by the coffee shop.
Before heading to the gym, she updates her iPod for the
workout with a podcast delivered earlier to her parcel.

In this scenario, ISR readily supports Jill’s well-connected
desktop sessions at home and office. However, resume and
suspend times at the coffee shop are unacceptable because
of poor Internet connectivity. Since the loaner laptop has to
be returned to the coffee shop, Jill is forced to wait for the
full duration of the suspend latency.

Horatio could greatly improve Jill’s user experience at the
coffee shop. When leaving work, Jill suspends her desktop
session to her smart phone. At the coffee shop, she quickly
resumes from the phone. Before leaving the coffee shop,
she quickly suspends to her phone, returns the loaner lap-
top and heads off for the gym. During her walk, Horatio
uses the phone’s 3G connectivity to send parcel changes to
the ISR server; it completes this task during her workout
by using WiFi connectivity in the gym. Together, ISR and
Horatio provide Jill with the illusion of seamless and ubiq-
uitous access to her PC state without her carrying anything
more than her smart phone.

2.2.2 A Week in a Global Traveler’s Life
Jack is a marketing consultant with projects that span the

U.S. and Europe. An upcoming business trip requires him
to make multiple stops within the U.S. and then multiple
stops within Romania. As Figure 1 illustrates, Jack will ex-
perience two oases of connectivity (entirely within the U.S.,
and entirely within Romania) within which Internet connec-
tivity is excellent. However, connectivity is poor between
the U.S. and Romania. When Jack travels between client
sites A and B within the U.S., he can resume his ISR session
directly from the server; when he is ready to leave a site, he
can suspend his ISR session back to the server. However,
when Jack travels between sites in Romania (C and D in
Figure 1), his ISR user experience is unacceptable. Because
of poor connectivity to his ISR server in the U.S., he expe-
riences long resume latency, substantial slowdown and long
suspend latency. Thus, ISR becomes virtually unusable.

Carry PC hardware Thin client Software VM on VM delivered Horatio
remote access virtualization USB device over Internet

Examples of approach any laptop, notebook, GoToMyPC, MojoPac, U3, SoulPad ISR -
or UMPC VNC Ceedo

Mobility footprint large zero very small very small zero small
Accuracy of re-creation perfect perfect variable high high high

Network resiliency perfect low perfect perfect high very high
Network demand zero low zero zero very high high

Physical vulnerability high zero high high very low low

Table 1: Strengths and Weaknesses of Mobile Computing Alternatives

Horatio offers a powerful solution to this problem. Before
leaving the U.S., Jack can suspend his session to Horatio.
In Romania, he can resume directly from Horatio. As Jack
moves from Site C to Site D, for example, he can quickly
suspend and resume to and from Horatio, with performance
similar to what he experiences while in the U.S. Additionally,
as he travels within Romania, Horatio can opportunistically
take advantage of transient good connectivity to the U.S.
to incrementally propagate modified state to his ISR server.
Finally, when Jack returns to the U.S., Horatio can complete
any remaining state transfer and synchronization steps.

3. TAXONOMY OF APPROACHES
Table 1 summarizes how well alternative approaches to

mobile computing approximate the unattainable ideal of a
zero mobility footprint combined with perfect reliability, saf-
ety and performance. Although both ISR and thin client
remote access offer a zero mobility footprint, ISR has much
lower sensitivity to WAN latency and jitter. This arises from
the very different ways in which ISR and thin clients use the
network. With ISR, synchronous network access is needed
only to service cache misses. Once a part of VM state is
cached, further execution only involves local accesses to it.
After the working set of VM state is built up, an ISR user’s
interactive experience on applications and files within the
guest OS is fully insulated from network degradation until
the end of her session. Only references to remote files or
to the Web continue to be network-dependent. In contrast,
thin clients are sensitive to network degradation for the en-
tire duration of a user session. Tolia et al. [17] show that the
adequacy of thin-client computing is highly variable, and
depends on both the application and the available network
quality. It is latency, not bandwidth, that is the greater chal-
lenge. Tightly coupled tasks such as graphics editing suffer
more than loosely coupled tasks such as web browsing. ISR
makes the tradeoff of reducing sensitivity to network latency
and jitter at the cost of increased bandwidth demand: ship-
ping VM state involves far more data than the keystrokes,
mouse movements, and screen updates of thin client remote
access.

ISR’s tradeoff (increasing bandwidth demand for reduced
sensitivity to WAN latency and jitter) aligns well with the
current trajectory of Internet evolution. It is very unlikely
that the fundamental considerations leading to this trade-
off will change in the foreseeable future. The prime targets
of networking improvements today are bandwidth, security,
energy efficiency, and manageability. Often, the techniques
used for these improvements hurt latency. For example, fire-
walls and overlay networks both achieve their goals by in-
creasing the software path length traversed by packets. In
wireless networks, a common energy-saving technique is to
turn on the mobile device’s transceiver only for short periods

of time to receive and acknowledge packets that have been
buffered at a base station. This increases average end-to-end
latency for packets, and also increases jitter. In contrast,
bandwidth may be hardly affected by these techniques be-
cause it is an aggregate rather than instantaneous measure.
WAN bandwidth is likely to improve over time, but compa-
rable improvements in WAN latency and jitter are unlikely.

Total network independence (i.e., perfect resilience and
zero demand) combined with a very small mobility footprint
can be achieved by transporting PC state on a USB storage
device. This corresponds to the columns labeled “Software
virtualization” and “VM on USB device” in Table 1. For
example, in SoulPad [5] execution state is encapsulated in
a VM and transported on a USB storage device between
different machines. MojoPac [2] is a software virtualization
product that customizes applications for installation on to
a USB storage device, which can then be transported to
any other compatible machine for re-creation of the origi-
nal application environment. Accuracy of re-creation is the
property that defines the level to which the user experience
is similar across machines.

Physical vulnerability is a concern with all approaches ex-
cept thin clients. With ISR, it only involves loss of work
since the last suspend. With the other approaches, loss or
destruction of the USB storage device leads to loss of PC
state. A careful regimen of backups can help, but many users
are not sufficiently disciplined for this to be a satisfactory
solution. From the viewpoint of usability, restoration from
backup is typically an administrative step that involves dif-
ferent software, different system context and a different set
of commands and actions from normal use. In contrast, re-
covery in ISR is integrated with normal usage context: one
merely asks to resume an earlier version of a parcel. The lack
of integration also requires a backup system to be run pe-
riodically to scan for state changes, even when there are no
changes. This introduces a trade-off between energy usage
and time between backups on a smart phone.

Horatio improves upon ISR along the dimensions of net-
work resiliency and network demand. It achieves this at
a slight increase in the mobility footprint. There is also a
slight increase in physical vulnerability because dirty VM
state may reside on a Horatio device while awaiting trans-
fer to a server. However, the self-cleaning aspect of Horatio
bounds the duration of physical vulnerability. If dirty state
on Horatio is lost before self-cleaning completes, only the
work done since the most recent resume is lost. Compared
to Horatio, the “Software Virtualization” and “VM on USB
device” approaches have greater physical vulnerability, since
entire computing state resides on a local USB storage de-
vice. If the device is lost or damaged, the only recourse is
to restore from backup. This is more onerous than simply
executing “isr resume <previous-parcel-version>.”

Remote
low physical vulnerability

Parcel Home
Local

high network resilience

Lo
ca

l
cr

is
p

in
te

ra
ct

io
n

R
em

ot
e

hi
gh

 c
om

pu
te

 p
ow

er
Pa

rc
el

 L
oc

us

Classic PC model
Laptops

SoulPad, MojoPac

Remote Execution
Cyber Foraging

ISR model

Thin client model

H
or

at
io

Snowbird Transient Thin Client

Figure 2: Separating Parcel Storage and Execution

Figure 2 illustrates a different way of looking at the de-
sign space around Horatio. For ease of exposition, we use the
term “parcel” in this figure to mean “user’s computing en-
vironment” even in non-ISR models. We also use the terms
“resume”and“suspend”to mean execution startup and shut-
down. The design space has two dimensions. The parcel
home dimension corresponds to the storage site of a parcel
when it is not in active use. The parcel locus dimension cor-
responds to the current execution site of a parcel. Moving
clockwise from bottom left, the quadrants of Figure 2 map
to different models of mobile computing:

• local/local: local hardware executes a local parcel.
The classic unvirtualized PC falls into this quadrant.
A laptop has a smaller mobility footprint, but is oth-
erwise identical. Even smaller mobility footprints are
exhibited by SoulPad, MojoPac and other solutions
based on a small USB device. This quadrant exhibits
fast resume and suspend combined with crisp interac-
tive response that is immune to network quality and
reliability. However, the parcel is vulnerable to damage
or loss of its storage device.

• local/remote: remote hardware executes a local par-
cel. When the remote resources are dynamically dis-
covered in mobile computing, this corresponds to “cy-
ber foraging” [4]. A small mobility footprint is achieved
because the mobile device only needs to store the par-
cel rather than to execute it. Device vulnerability is
similar to the local/local case.

• remote/remote: parcel is both stored and executed
remotely. The client merely serves as a portal to the
execution. It thus corresponds to thin client remote
access, and provides fast resume and suspend with a
zero mobility footprint and zero device vulnerability.
On the negative side, it has low network resiliency.

• remote/local: a remote parcel is fetched for local
execution. This is essentially the ISR model. Resume
and suspend are potentially slower than the local/local
case, but the mobility footprint is zero and device vul-
nerability is low.

Figure 2 also identifies three hybrid models. “Snowbird”
is a VM-based system [10] that dynamically morphs be-

tween local and remote execution. “Transient thin client”
is a planned extension of the OpenISR platform that will al-
low a user to quickly resume a parcel via thin client remote
access [13]; execution morphs into local execution once the
working set of parcel state has been transferred to the client
in the background. “Horatio” corresponds to the case where
a smart phone serves as a temporary parcel home.

4. DESIGN AND IMPLEMENTATION
The enabling technology for Horatio is the smart phone,

whose primary function includes basic mobile phone capa-
bilities such as voice calls and texting. In addition, these
smart phones may be viewed as “always-on” computing and
storage devices with multiple network modalities (such as
3G, WiFi and Bluetooth) for Internet connectivity. Since
these devices are still in the early stages of evolution, their
capabilities are likely to improve significantly over time. Our
goal in this research is to both validate the Horatio concept
on currently-available smart phones, and to identify specific
directions of improvement for future smart phones to serve
as Horatio devices.

Horatio’s goal is to serve as a performance accelerator for
ISR, and to thus improve user experience in situations where
Internet connectivity is poor or non-existent. In other words,
Horatio should reduce resume latency, slowdown, and sus-
pend latency in scenarios such as those in Section 2.2. It
should also enable use of a machine with no Internet con-
nectivity as an ISR client. It should achieve these benefits
without significantly increasing the mobility footprint (i.e.,
energy usage) of a smart phone.

To meet these requirements, our design and implementa-
tion are based on a few key principles. We list these below,
and discuss them in Sections 4.2 to 4.6:

• Expose opportunities for parallelism, asynchrony and
speculation in data transfers by separating control from
data (Sections 4.2, 4.6.1, and 4.6.3).

• Recognize that trust flows upstream, while performance
flows downstream (Section 4.3).

• Use client and server resources rather than Horatio re-
sources whenever possible (Section 4.4).

• Keep Horatio clean (Section 4.5).

4.1 Design Assumptions
We have made the following four assumptions in design-

ing Horatio. First, Horatio operates within an ISR-enabled
environment and uses the remote parcel home model of Fig-
ure 2. Consistent with this model, a Horatio user requires
temporary use of clients wherever needed, and establishes or
implicitly assumes trust in those clients prior to use [12, 14].

Second, we assume a Horatio user carries a smart phone
that supports wireless networking (3G and WiFi), and has
a USB-mountable disk large enough to store a user’s par-
cel data. This assumption is realistic since modern smart
phones already support multiple wireless networking options,
and many come with 8GB or more of disk (some are even
upgradeable to over 16GB with microSD disks). For both
3G and WiFi, we assume a fixed-fee cost model rather than
a volume-sensitive model for wireless data transfers.

Our third assumption is that users place extended trust
in their smart phones, but only transient trust in ISR clients
that are borrowed. Between resume and suspend, the user
trusts the ISR client that is executing her parcel. Once she
walks away after suspend, she no longer counts on that client

State Name Type Typical Size Description
Memory Image data 200 MB Encrypted and compressed memory image and registers.
Disk Image data 3.5 GB Individually encrypted and compressed chunks of virtual disk.
Keyring control 5.5 MB Encryption keys and cryptographic hashes of virtual disk

chunks. Encrypted with a key stored in the configuration file.
Configuration File control 500 bytes Operational parameters of a parcel and encryption key used to

encrypt the keyring and memory image.
Ownership Nonce control 10 bytes A unique identifier generated when a parcel is checked out from

an ISR server.

Table 2: Data and Control State of a Parcel

to remain uncompromised or to propagate dirty state to the
server. In contrast, she has complete confidence that Hor-
atio will propagate dirty state to the server even if it takes
many hours or days. Although attacks on smart phones are
growing, this problem needs to be solved even if the smart
phone is not used as a Horatio device.

Fourth, we assume strong connectivity between the ISR
client and Horatio, which is reasonable given the close prox-
imity of Horatio to the ISR client. For the ISR client-server
and Horatio-ISR server links, we allow for the broadest range
of connectivity, including total disconnection.

4.2 Data and Control Separation
Achieving Horatio’s twin goals of improving ISR user ex-

perience and efficient self-cleaning is complicated by several
factors. These include the large size of VM state, the wide
range of network connectivity that has to be tolerated (rang-
ing from gigabit LANs down to kilobit wireless links and even
total disconnection), and the unpredictability in the avail-
ability and durability of network connections. When WiFi
coverage is available, it is preferable to 3G for self-cleaning
both from the viewpoint of performance and energy usage.
When WiFi is unavailable, 3G may be the only choice. In
addition, a recently-used ISR client may sometimes assist in
propagating dirty state after suspend, even though our trust
model does not require it to provide this assistance.

In other words, a good Horatio design has to work robustly
and efficiently even in the face of considerable uncertainty
in connectivity and client participation. We address these
requirements by enabling uncoordinated, asynchronous data
transfers to take place in parallel to the server from one or
more recently-used clients as well as Horatio. Our design
follows the principle of opportunism advocated by Tolia et
al. in their work on DOT [16]. As their work shows, the
key to achieving efficiency while preserving correctness with
minimal coordination across multiple data transfer channels
is to cleanly separate bulk data from its meta-data.

As Table 2 illustrates, Horatio views a parcel as consist-
ing of two very distinct components: data state and control
state. The data state consists of an encrypted VM mem-
ory image and individually-encrypted 128KB chunks of the
virtual disk. The control state, which is the knowledge nec-
essary to decrypt, validate and use the data state, consists of
an encrypted keyring, a configuration file, and an ownership
nonce, which is described below. Clean separation of con-
trol and data simplifies the use of replication and parallelism,
while enabling the speculative transmission of modified data
to be performed through the use of eager state propagation.
Horatio can be quite cavalier in its use of these techniques
for data state, provided it handles control state very care-
fully. Figure 3 illustrates client-Horatio-server interactions,
which are explained in more detail in Sections 4.2.1 to 4.2.3.

4.2.1 Parcel Ownership and Handoff
The absence of state sharing across VMs means that a

single exclusive lock per parcel is acceptable. In Horatio,
the ownership nonce represents this lock. When a parcel
is checked out, the ISR server generates a new ownership
nonce. This nonce has to be provided when the parcel is
checked in. Possession of the nonce is proof that the en-
tity performing the checkin is acting on behalf of the user.
This is a reasonable assumption since all network connec-
tions (client-server, client-Horatio, and Horatio-server) are
encrypted and authenticated. Exactly one site (client, server,
or Horatio) can own a particular parcel at any point in time.
Only the parcel owner can decrypt and validate the data
state, but any site can cache parts of the data state or trans-
mit parts of it in any way it chooses. As a result, most of
a parcel’s data state can be transferred opportunistically by
the site most able to do so. Regardless of how it reached its
destination, such data can be safely used after validation.

Ownership handoff occurs in three steps. First, the source
site confirms that all required data has arrived at the des-
tination site. Second, the keyring and configuration file are
transferred. Finally, the ownership nonce is transferred us-
ing a two-phase commit protocol. If the source site is a client
or Horatio, it deletes its copy of the control state, rendering
it unable to decode any data state that is still cached.

4.2.2 Reducing Suspend Latency
When client-server bandwidth is poor, the user can save

time by performing a checkin of his parcel to his Horatio
device rather than directly to the server. This can occur
over any available connectivity such as USB, Ethernet, WiFi
or Bluetooth. Because the bandwidth between the client
and Horatio is likely to be much better than the bandwidth
between the client and server, checking in to Horatio can
significantly decrease suspend latency.

The client first transmits modified data state to Horatio,
then transfers parcel ownership. After this point, the client
may still have modified data state in its cache and may con-
tinue transmitting this dirty state directly to the server after
the user departs. This is not required for correctness, but
can reduce Horatio’s mobility footprint by reducing the vol-
ume of wireless data it needs to transmit.

4.2.3 Reducing Resume Latency
Horatio can reduce resume latency by serving as a looka-

side cache [15] for data state. If the parcel is currently owned
by the server, the control state is fetched from there. Other-
wise, it is fetched from Horatio. Using the control state, the
cryptographic hashes of the memory image and virtual disk
chunks can be obtained. These are used to demand-fetch
parts of data state from Horatio, if possible. Sometimes,
Horatio may not possess parts of the data state (typically

Mobile Device

Horatio

Parcel

Control
Parcel

Control

Parcel

Data
Parcel

Data

Server

ISR

Server

Parcel

Control
Parcel

Control

Parcel

Data
Parcel

Data

Client PC

ISR

Client

Parcel

Control
Parcel

Control

Parcel

Data
Parcel

Data

Figure 3: Control and Data Transfer in Horatio

those parts that are unmodified relative to the parcel version
stored on the server). In that case, the lookaside reference
fails and the client fetches that data directly from the server.

Horatio can be used to resume a parcel on a client that
is disconnected from the Internet. For this to be successful,
the user must have performed two steps in anticipation of
this possibility. First, he should have transferred ownership
of the parcel to Horatio. Second, he should have hoarded [8]
all data state on Horatio.

4.3 Trust versus Performance Flow
The separation of data from control, together with the

extensive use of parallelism, asynchrony and speculation in
data transfers, results in a large and complex distributed
parcel state space that spans an ISR server, multiple clients
and a Horatio device. Reasoning about correctness in this
state space (for example, “Can site A transfer ownership
of parcel X to site B right now?”) requires a simple set
of rules that is consistent with user intuition. Our rules
are based on a trust-performance hierarchy that arises from
the introduction of a trusted portable device into the client-
server model.

At the apex of trust is an ISR server. By definition, a
server is the ultimate authority for all the parcels that it
owns. It contains the definitive, complete and most recent
states of those parcels, except for some periods of time when
a parcel has been checked out on a client or suspended to
Horatio. Although the server may be temporarily inacces-
sible due to poor Internet connectivity, it is assumed to be
completely trustworthy and reliable.

In the eyes of its owner, a Horatio device is completely
trustworthy. It is thus ideally placed to offer ISR-related
services to its owner even when the server is inaccessible or
poorly-connected. For example, Horatio can buffer updates
for asynchronous propagation to a server. This resembles
the role envisioned for waystations by Kim et al. in their
work on Fluid Replication [7].

Lowest in the trust hierarchy is an ISR client at which a
user has checked out a parcel. The decision to trust the client
is made by the user based on familiarity (such as a machine
at work or home), reputation (such as use of a machine at
an Internet cafe that is known to provide malware-free ma-
chines), or an explicit trust establishment procedure [6, 14].

Counter to this trust hierarchy, which flows upstream (from
client, through Horatio, to server) is a performance hierarchy
that flows downstream. State that is already cached at the

Figure 4: Rules for Ownership Transfer

client has the lowest access cost and hence highest perfor-
mance. State on Horatio is slower to access, but often much
faster than accessing state on a distant server. Finally, state
on the server is most complete, but slowest to access.

These considerations of trust and performance lead to a
set of simple rules pertaining to ownership transfer. We dis-
tinguish between “upstream” and “downstream” ownership
transfers as shown in Figure 4. In the case of downstream
transfers, while the downstream device must have access to
all parcel state in order to resume the parcel, the state can
be fetched on demand. Therefore, the downstream site must
either have ongoing access to an upstream site holding all of
the data state, or must hoard all of that data state in ad-
vance. Dirty state can be held by an upstream site under
the same rules. When transferring ownership upstream, on
the other hand, all dirty state must be propagated before
ownership transfer can complete, and the ownership transfer
process must cryptographically validate that the destination
site does indeed hold a correct copy of the state. This is nec-
essary because the downstream site can discard parcel state
after control transfer.

As just described, while Horatio is the parcel owner, it
must maintain copies of all dirty data that has not yet been
committed on the server. In addition, Horatio may option-
ally retain copies of unmodified parcel data. This allows Hor-
atio to serve as a lookaside cache, supplementing the client’s
own cache. Cache misses can be serviced from the well-
connected Horatio rather than a poorly-connected server.

4.4 Resource Conservation on Horatio
In focusing on Horatio, it is important not to lose sight of

the fact that the primary function of a smart phone remains
voice communication and texting. If its Horatio functional-
ity drains its battery to the point where the primary function
is impacted at a critical moment, the net effect for the user
can be quite negative. Striving to reduce Horatio’s mobility
footprint is therefore an important aspect of our design and
implementation. We offload as much resource-intensive work
as possible to clients and servers. This is reflected both in
the structure of Horatio-client and Horatio-server commu-
nication protocols, and in low-level implementation aspects.
In this context, a major advantage of a wired client-Horatio
communication link such as USB is that it also has the po-
tential to supply energy to the Horatio device.

Offloading work to clients and servers also has a posi-
tive impact on performance. Smart phone designs must
balance platform capabilities against battery lifetime, and
therefore have limited CPU, memory, and storage capacity.
Even when the ISR client is a laptop, it is typically much
more computationally capable than a smart phone. Further,
in ISR scenarios such as Section 2.2.1, laptop battery life
tends to be less critical than Horatio battery life. Of course,
these considerations have to be balanced against the goal
of improving ISR user experience. When necessary, Horatio
should be prepared to supply its own resources in order to
ensure that the user’s needs are met. For example, if Horatio
has good connectivity to a server via a cellular data network,
it should be prepared to upload modified parcel state rather
than requiring the client to do so over a much poorer Inter-
net connection. This might be the case, for example, in the
scenario of Section 2.2.2.

4.5 Self-cleaning on Horatio
Despite the high level of trust placed in smart phones, they

are also fragile. Since they are small and carried everywhere,
they can easily be damaged or lost; they can also run out of
energy. In these situations, the effect on the user must be
minimized. Therefore, when Horatio holds the most current
copy of parcel data, it uses any available connectivity (such
as WiFi or 3G) to save that data on the less-fragile server
while the user is performing other tasks.

Once a parcel has been checked in to a Horatio device,
Horatio immediately begins self-cleaning: checking in the
parcel to the server using any available wireless connectiv-
ity, such as WiFi, WiMax, UWB, or a cellular data network.
Because Horatio is a trusted device and the user need not
wait for the transfer to complete, it is acceptable for this pro-
cess to take some time. However, the parcel data remains
vulnerable to the loss or destruction of the Horatio device
until self-cleaning completes. Optionally, Horatio can retain
parcel ownership even after self-cleaning completes; this ap-
proach provides maximum resiliency to loss of the Horatio
device, while still allowing the next resume site to check out
from Horatio rather than from the server. If Horatio pos-
sesses both parcel ownership and cached copies of all of the
parcel data, the parcel can be checked out from Horatio and
resumed on a fresh client that has no Internet connectivity.

If the Horatio device is lost or damaged while Horatio owns
the parcel, dirty parcel state stored on the device will be lost.
The recovery procedure in this event is the same as that for
a lost or damaged ISR client: the user can instruct the ISR
server to forcibly make itself the current parcel owner, in-
validating modified state held by the previous owner and
allowing another client to check out the parcel. This oper-
ation will roll back the parcel to its most recent commit on
the server. Should Horatio or a client later attempt to check
in the invalidated state, the ownership nonce will no longer
match that at the server, and the checkin will be rejected.

4.6 Additional Optimizations
Our prototype contains several additional optimizations

for improving suspend latency and energy efficiency. These
are described in Sections 4.6.1 to 4.6.3 below.

4.6.1 Concurrent Upload from Multiple Sites
As discussed in Section 4.2, the separation of control and

data state allows for the concurrent propagation of data state
to a server from multiple sources. To reduce the energy de-

mands on Horatio, we take advantage of the fact that any
client can continue to transfer data state to a server even af-
ter ownership has been transferred to Horatio. After check-
ing in to Horatio and thus relinquishing parcel ownership, an
ISR client will attempt to upload modified parcel data di-
rectly to the server. Because Horatio maintains a complete
copy of the modified data, the user need not trust that the
client will complete the upload successfully, but any data
uploaded by the client is data that Horatio does not have to
expend energy to transmit. Horatio, through its interaction
with the Server daemon (see Section 4.7), will validate the
cryptographic hashes of data uploaded by clients and ignore
invalid or incomplete data, so correctness is preserved even
if the client is compromised after the user departs. This op-
timization strictly improves Horatio’s battery utilization: if
the client fails to upload dirty data, or maliciously uploads
invalid data, Horatio expends no more energy in self-cleaning
than if the client did not upload at all.

4.6.2 Memory Image Differencing
OpenISR 0.9.4, upon which the Horatio prototype is based,

treats a parcel’s memory image as a single, large object.
Thus, if a parcel is resumed even for a moment, the entirety
of the memory image must be transferred to the server at
checkin. However, the ISR server will always have, and Ho-
ratio will often have, a copy of the memory image as of the
most recent checkin (the “basis image”). We have modified
the ISR client in the Horatio prototype so that if the des-
tination of a checkin does possess such a copy, the client
computes and transmits only a delta between the basis and
current memory images. This improves energy efficiency,
suspend latency, and self-cleaning time.

If the client is performing a checkin to the server, the
server is responsible for applying the delta to the basis image
to produce the new memory image. If the checkin is to
Horatio, however, applying the delta is too expensive an
operation to be performed on the Horatio device. The delta
is therefore saved separately on Horatio, forwarded to the
server during self-cleaning, and applied at the server when
the parcel is committed. If another client checks out the
parcel from Horatio, the basis image plus the delta is sent.

4.6.3 Eager State Propagation
In the design described in Section 4.2, transfer of modified

data state to Horatio only begins at checkin, after the end
of a user’s session. At this point, she must wait for poten-
tially several hundred MB of data to be transferred. While
this may be faster than transferring the data to the server
over a slow connection, it may still be unacceptably slow.
The client therefore opportunistically collects modified disk
chunks and memory image state from the parcel while it is
running, and speculatively transmits this data to Horatio in
the background. Due to this speculation, the state that is
collected in this way may not be internally consistent, but
it serves to prepopulate the Horatio device with data that is
likely to be needed. At checkin, only the final set of differ-
ences between the previously-transmitted and the final state
are sent to Horatio, minimizing the amount of time that the
user must wait. Additionally, the final set of differences fixes
any inconsistencies incurred due to the speculation. Also,
because of potential update locality in the workload, some
of the data transmitted to Horatio may be overwritten be-
fore suspend. Eager data transfer thus increases the total
amount of data that needs to be transferred, and therefore,

Openmoko Neo FreeRunner Nokia N95-8GB Sandisk Mobile Ultra
Abbreviation OM N95 SD

Type Smart phone Smart phone microSD card
Operating System Linux 2.6 Symbian OS 9.2, S60 rel 3.1 -

Processor ARM920T 400 MHz ARM11 332 MHz -
Memory 128 MB 128 MB -

Internal Flash 256 MB 128 MB 2 GB
Additional Flash 2 GB microSD 8 GB Internal -

Connectivity Full-Speed USB (12 Mbps) Full-Speed USB (12 Mbps) Hi-Speed USB (480 Mbps)
Bluetooth 2.0 Bluetooth 2.0 microSD
802.11g, GPRS 802.11g, 3G

Table 3: Portable Devices Used In Horatio Evaluation

Workload Execution Dirty State (MB) Workload Description
Name Time (s) Memory Disk
Email 327.6 (0.5) 16.1 (0.5) 3.4 (0.1) Use Evolution email client to download, read, and reply.

Word 604.7 (1.1) 40.8 (3.5) 3.3 (0.1) Use OpenOffice Writer to compose and save a letter.

Photo 803.7(1.3) 24.5(0.1) 3.9(0.0) Use GIMP image editor to edit photos in an album: remove red-eye
artifacts from persons in the photos, clone a person multiple times,
and make color and lighting adjustments to photos.

Shop 690.8(2.2) 30.6(0.1) 13.8(0.2) Shop online for a TV: browse websites of online retailers using Mozilla
Firefox, and note prices and technical details with gedit text editor.

Podcast 419.0(0.7) 120.4(0.3) 109.3(0.1) Download a 108 MB MP3 audio podcast using the Rhythmbox media
player, and transfer the new podcast to portable music device.

Video 2382.0(0.0) 263.8(5.7) 368.1(0.9) Download and watch a 30-minute, 378 MB MPEG-4 file.

Results are execution times in seconds and state sizes in MB. Each result is the mean of two measurements. Standard deviations
are reported in parentheses.

Table 4: Macrobenchmark Workloads

the amount of energy expended by Horatio. The user can
address this concern by connecting the Horatio device to a
power source while using the client.

The Horatio design also allows for concurrent eager state
propagation, similar to concurrent state propagation that
occurs at suspend time (see Section 4.6.1). In this case, if
ample bandwidth between the ISR client and server exists,
the client may choose to eagerly propagate state modifica-
tions to the server, rather than to Horatio. In fact, given
the broad possible range of link performance combinations
between the client-Horatio and client-server links, the ISR
client can optimize eager state propagation by selectively
choosing to which target (Horatio, ISR server, or both) to
eagerly propagate the state modifications. Our current sys-
tem allows the user to decide.

4.7 Implementation
The Horatio prototype implementation consists of three

separate components: the Client daemon, the Horatio Phone
daemon, and the Server daemon, running respectively on
the client, Horatio device, and server. The Client and Ho-
ratio Phone daemons are responsible for performing state
and ownership transfers between their respective devices.
The Horatio Phone daemon performs self-cleaning, while the
Client daemon performs concurrent upload, by communicat-
ing with the Server daemon. The Server daemon, in turn,
interacts directly with the ISR server to assist the other dae-
mons with these tasks.

The Horatio prototype currently runs on two smart phone
platforms, the Openmoko Neo FreeRunner and the Nokia
N95. Specifications for these devices are given in Table 3.
The FreeRunner is Linux-based, and supports GPRS and
WiFi wireless connectivity; the N95 is Symbian S60-based,
and supports 3G and WiFi.

Most components of Horatio are written in Python version

2 for portability. Performance-critical sections of the state
transfer code are implemented in C and compiled natively for
each platform. Use of the Symbian S60 Open C libraries on
the N95 allowed the same C source code to be used for both
smart phones. Horatio also required changes to OpenISR
client and server code. The client was modified to initiate the
Client daemon. The server was modified to support applying
memory image deltas, as described in Section 4.6.2, and to
support ownership transfer between the client and Horatio.

5. EVALUATION
Our experimental evaluation of the Horatio prototype ad-

dresses four questions:
• How much does Horatio improve user experience (Sec-

tion 5.2)?

• How effective is self-cleaning in reducing the vulnera-
bility of a Horatio device (Section 5.3)?

• What is the impact of Horatio on a user’s mobility
footprint (Section 5.4)?

• How effective is eager state propagation in reducing
suspend latency (Section 5.5)?

5.1 Experimental Methodology and Setup
We use two types of experiments in evaluating Horatio.

The “microbenchmark” experiments use synthetically gener-
ated parcel state. The “macrobenchmark” experiments use
parcel state generated by a set of scripted workloads.

5.1.1 Microbenchmarks
Each microbenchmark is based on an initial parcel config-

ured with 512 MB of RAM and a 4 GB disk. For each set of
measurements, we vary the amount of dirty data state that
must be transferred by synthetically generating a predeter-
mined amount of incompressible state and updating the par-

Dirty State Size
Horatio Device 1 MB 10 MB 100 MB 500 MB
ISR-1 (No Horatio) 1433.5(6.5) 1487.5(0.5) 2118.0(3.0) 4936.0(15.0)

N95-WiFi 39.0(2.5) 68.7(2.4) 301.3(5.0) 1239.2(27.5)

OM-WiFi 32.7(2.1) 48.0(0.8) 260.3(5.3) 1040.0 (8.6)

N95-USB 29.3(4.4) 44.0(2.5) 142.0(1.3) 625.0 (4.3)

SD-USB 23.3(0.5) 25.3(0.5) 40.3(1.3) 136.0 (2.2)

Results are suspend times in seconds and are the mean of six measurements. Standard deviations are reported in parentheses.
ISR-1 represents the base ISR case over a 1Mbps WAN link.

Table 5: Microbenchmark Suspend Results.

Dirty State Size
Horatio Device 0 MB 1 MB 10 MB 100 MB 500 MB
ISR-1 (No Horatio) 281.5(1.5) - - - -
N95-WiFi - 397.7(2.5) 409.3 (2.3) 507.5(6.0) 951.2(20.1)

OM-WiFi - 292.3(1.7) 314.7(12.0) 372.0(2.2) 692.0 (2.2)

N95-USB - 226.0(3.2) 237.0 (6.7) 283.8(0.7) 520.8 (2.5)

SD-USB - 34.7(0.5) 34.3 (0.9) 35.7(0.5) 51.3 (0.9)

Results are resume times in seconds and are the mean of six measurements. Standard deviations are reported in parentheses.
ISR-1 represents the base ISR case over a 1Mbps WAN link.

Table 6: Microbenchmark Resume Results.

cel disk and memory images. We distribute the dirty state
equally between memory and disk, e.g., 100 MB of dirty state
would be divided between 50 MB of dirty memory state and
50 MB of dirty disk state.

During suspend and resume, there is a fixed amount of
base state that must be transferred along with the dirty
state. For suspend, the amount is 8 MB and consists of the
control state items (keyring, configuration file, and nonce)
that must be transferred to Horatio along with the data
state. For resume, the amount is 175 MB consisting of the
control state items and the initial VM memory image. This
image must be copied to the client as the base memory image
to which the dirty state memory diffs are applied. In some
situations, a client may already possess a cached copy of
the base memory image. In our experiments, we assume the
worst case for Horatio and clear the client cache after each
run. In future, we plan to demand fetch the memory image,
just as we demand fetch VM disk state today.

5.1.2 Macrobenchmarks
Our macrobenchmarks consist of six workloads, lasting

between three and forty minutes, that exemplify activities
commonly performed by desktop users. Table 4 summarizes
these workloads. Each workload uses the same parcel, in the
same state: a Debian Linux 5.0 guest with 512 MB of RAM
and an 8 GB disk, containing all of the applications needed
to run the workloads.

5.1.3 Hardware Setup
Our evaluation uses three different Horatio devices: (i) an

Openmoko Neo FreeRunner, (ii) a Nokia N95, and (iii) a
USB-connected flash storage card. Specifications for these
devices are given in Table 3. Device (iii) does not meet all
of the requirements for Horatio, since it cannot perform self-
cleaning. We include it because it represents a case that
neither the N95 nor FreeRunner support: USB 2.0 in Hi-
Speed (480 Mbps) mode. Since new models of smart phones
are starting to support both microSD and Hi-Speed USB,
it allows us to observe the expected suspend and resume
latency for Horatio on emerging devices.

Our ISR client PC is a Dell Optiplex 755 with a 2.33 GHz
Core 2 Duo CPU, 3 GB of RAM, a 250 GB Serial ATA

disk at 7200 RPM, and support for Hi-Speed USB. The ISR
server is a Dell SMP server with dual 2.8 GHz Pentium 4
Xeon processors, 1 GB of RAM, a 32 GB Fast-Wide SCSI
disk at 10,000 RPM, and a 1 Gbps Ethernet connection. We
consider two different client-Horatio interconnects: 802.11g
WiFi and USB. We evaluate WiFi for the FreeRunner and
N95 smart phones, and USB for the N95 phone and the
USB-connected microSD card. We evaluate Horatio’s self-
cleaning performance over the Internet via both WiFi and
the AT&T Wireless 3G network. The 3G network has ad-
vertised upload speeds between 500 Kbps and 1.2 Mbps, and
download speeds between 700 Kbps and 1.7 Mbps. For the
WiFi experiments, Horatio connects to the Internet via the
Linksys 802.11g access point through a 1 Mbps residential
broadband Internet connection. The ISR client and server
are also connected over the same residential link.

Throughout Section 5, we refer to a particular combina-
tion of Horatio device and connectivity via a two-part ab-
breviated name. The first part of the name is the device
type, using the abbreviations given in Table 3. The second
part is the relevant connectivity. For example, if a suspend-
time measurement refers to “N95-WiFi,” it refers to Nokia
N95 using WiFi to communicate with the client. For a self-
cleaning experiment, the same name would refer to an N95
using WiFi to the server.

5.2 Improvement in User Experience

5.2.1 Microbenchmarks
We first evaluate Horatio’s suspend and resume times over

WiFi and USB, using synthetically generated dirty state as
described in Section 5.1.1. Table 5 presents the resulting
suspend latencies with 1 to 500 MB of dirty state, and Ta-
ble 6 presents the resume times. With smaller amounts of
dirty state, suspend and resume latencies are dominated by
the overhead of transferring the fixed parcel state. As the
dirty state size increases, this effect is reduced. We also com-
pare against standard ISR (without Horatio) over a 1 Mbps
residential Internet connection.

In the suspend case, Horatio shows a substantial perfor-
mance improvement over standard ISR. For resume, stan-
dard ISR performs better than both Horatio WiFi cases.

The primary reason for this is that these experiments in-
clude a fixed amount of dirty state at Horatio, which must
be propagated back to the client during resume from Hora-
tio. A resume from the ISR server implies clean state, since
all state updates must have been sent back to the server
during the last suspend. Therefore, when resuming from
the ISR server, only the memory image and control state is
propagated to the client. By comparing the base ISR 0MB
case to the Horatio with 1MB of dirty state cases (column 2
in Table 6), we observe that both USB cases exhibit reduced
resume latencies. Since these cases are dominated by the
memory image and control state transfers, we can see that
a clean Horatio resumes faster than the base ISR case.

On the FreeRunner and N95, suspend and resume laten-
cies are limited by the USB speeds of the Horatio device. At
the higher transfer rates seen with the microSD card, how-
ever, the bottleneck becomes the generation and application
of memory images on the client PC. In addition, for both
suspend and resume times, observed performance with the
FreeRunner is consistently better than that obtained with
the N95. Further experiments show that the FreeRunner ex-
hibits better WiFi throughput and better write performance
to internal storage: the FreeRunner achieves 870 KB/s and
2.03 MB/s, respectively, while the N95 achieves only 690
KB/s and 688 KB/s.

Finally, we note that as the state size passes 100 MB,
the observed suspend and resume latencies over WiFi start
to approach the limits of what a user might be willing to
withstand. Observed latencies over USB are substantially
better. The N95 exhibits adequate performance even with
only Full-Speed USB, while the microSD card with Hi-Speed
USB exhibits latencies under a minute for all but the 500 MB
suspend operation.

5.2.2 Macrobenchmarks
In this section, we evaluate suspend and resume times ex-

perienced with Horatio using the workloads described in Sec-
tion 5.1.2. The testbed for these experiments consists of an
ISR client and server, plus the Horatio device. The client is
a desktop system with a 2.66 GHz Intel Core 2 Duo and 2
GB of RAM. Its software consists of Debian Linux 5.0 with
kernel 2.6.26, and the VMware Player 2.5.0 virtual machine
monitor. The server is a 3 GHz Intel Pentium 4 host with 2
GB of RAM, running Ubuntu Linux with kernel 2.6.27. The
two hosts communicate through a netem-emulated WAN link
with bandwidths of 1 Mbps and 10 Mbps, and a round trip
time (RTT) of 20 ms. In today’s Internet, 10 Mbps repre-
sents a highly favorable connection. We evaluate Horatio
suspend and resume performance over WiFi using the Nokia
N95, and over USB using the microSD card.

The results of these experiments are presented in Figure 5.
The figure includes workload execution times because they
represent productive work from a user’s viewpoint — in the
ideal case, workload execution time would dominate suspend
and resume times and thus result in an all-black bar. As the
figure shows, Horatio improves both suspend and resume
times compared to standard ISR, particularly when Horatio
is connected to the client over USB. The improvement is the
most dramatic on the 1 Mbps link. If Jill were to watch a
thirty-minute video at the coffee shop with a 1 Mbps con-
nection to the ISR server, her suspend time would be more
than one and a half hours with standard ISR, but just over
five minutes with Horatio over USB.

5.3 Effectiveness of Self-Cleaning
We evaluate the effectiveness of Horatio’s self-cleaning func-

tionality by determining the window of time during which
parcel data stored on Horatio would be vulnerable to data
loss — that is, the amount of time required for self-cleaning.
Intuitively, a user would wish to minimize this time, but a
vulnerability time of minutes or hours, rather than days, is
likely to be acceptable.

5.3.1 Microbenchmarks
To perform the self-cleaning microbenchmarks, we use the

experimental setup described in Section 5.1. The Horatio
device self-cleans 4.5 MB of fixed state and between 1 MB
and 100 MB of dirty state, uploading to the ISR server over
WiFi or 3G wireless connectivity. We evaluate self-cleaning
over WiFi using both the Nokia N95 and Neo FreeRunner.
3G connectivity is evaluated using only the N95, since the
FreeRunner does not support 3G.

Dirty State Size
Horatio Device 1 MB 10 MB 100 MB
N95-WiFi 36.3(0.9) 97.0 (0.0) 869.0 (15.1)

OM-WiFi 13.0(0.0) 82.3 (0.5) 775.0 (0.8)

N95-3G 152.7(1.3) 477.7(14.4) 3848.3(102.8)

Self-cleaning times (in seconds) are given as the mean and
standard deviations of three measurements (in parentheses).

Table 7: Self-Cleaning Time (Microbenchmarks)

As Table 7 shows, self-cleaning times are reasonable in all
cases. The longest times are observed for the N95-3G ex-
periments. With 100 MB of dirty state, the N95 was able to
self-clean over 3G in approximately one hour. Use of 802.11g
substantially improves self-cleaning performance, reducing
this worst-case time to just under 15 minutes.

5.3.2 Macrobenchmarks
In this section, we evaluate self-cleaning using the work-

loads described in Section 5.1.2, over both WiFi and 3G
wireless connectivity. The Horatio device transfers 4.5 MB
of fixed state, plus the amount of dirty state generated by
the workload, to the ISR server described in Section 5.1.3.
The N95 smart phone is used as the Horatio device.

Workload N95-WiFi N95-3G
Email 213.3 (14.0) 739.3 (5.3)

Word 953.0 (9.4) 4353.5 (90.5)

Photo 839.3 (19.0) 3381.0(129.0)

Shop 1103.0 (50.3) 4830.0(313.0)

Podcast 2199.7(176.3) 6398
Video 8034 23665

The self-cleaning times (in seconds) are given as the mean
of three measurements. Standard deviations are reported in
parentheses. Results reported in italics are estimates based
upon measured self-cleaning rates.

Table 8: Self-Cleaning Time (Macrobenchmarks)

As Table 8 shows, the results are comparable to those in
Section 5.3.1. Most cases complete the self-cleaning process
in under an hour, and all but two complete in under two
hours. The worst case self-cleaning time takes an estimated
6.5 hours to complete; this is for the most data-intensive

 0

 500

 1000

 1500

 2000

 2500

 3000

ISR-1 ISR-10 N95-WiFi SD-USB

T
im

e
(s

)

resume
execution
suspend

(a) Email

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

ISR-1 ISR-10 N95-WiFi SD-USB

T
im

e
(s

)

resume
execution
suspend

(b) Word

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

ISR-1 ISR-10 N95-WiFi SD-USB

T
im

e
(s

)

resume
execution
suspend

(c) Photo

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

ISR-1 ISR-10 N95-WiFi SD-USB

T
im

e
(s

)

resume
execution
suspend

(d) Shop

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

ISR-1 ISR-10 N95-WiFi SD-USB

T
im

e
(s

)

resume
execution
suspend

(e) Podcast

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

ISR-1 ISR-10 N95-WiFi SD-USB

T
im

e
(s

)

resume
execution
suspend

(f) Video
The figure shows that Horatio reduces suspend and resume times experienced by the user significantly over normal ISR. The ideal
case is an all black bar. The ISR-1 and ISR-10 bars represent normal ISR with an emulated WAN link of 1Mbps and 10Mbps,
respectively. Results are the mean of three measurements and standard deviations were below 19% in all cases. The scales of
the graphs differ to improve the presentation.

Figure 5: Suspend and Resume Overheads (Macrobenchmarks)

workload, which generates over 700 MB of dirty state. Al-
though the self-cleaning times are longer for the two down-
load workloads, we observe that users are likely to place
substantially more value in personally-generated data, such
as their word processing documents and spreadsheets, than
they would in downloaded data such as multimedia files.
This is because when lost, most downloaded content can be
fetched again. Therefore, Horatio performs very well under
the most important workloads.

Finally, in all cases there is a substantial performance ben-
efit to using WiFi over 3G. Based upon the observations from
both the micro– and macrobenchmark experiments, we con-
clude that self-cleaning can successfully reduce the window
of data vulnerability to an acceptable duration.

5.4 Impact on Mobility Footprint
In this section, we present an evaluation of the energy costs

associated with the suspend and resume operations. We also
evaluate the energy cost of self-cleaning. In actual use, the
user should not have to pay the suspend and resume costs,
since the Horatio device should be able to charge its battery
while connected to a PC client. However, it is possible that
an external power source may not be available for Horatio
while the parcel is running.

We use the microbenchmark described in Section 5.1.1 to
determine the energy demands for three operations: (i) sus-
pend, (ii) resume, and (iii) self-cleaning. We report the
amount of energy consumed by the N95 smart phone during
each operation, along with the percentage of battery uti-
lization this represents. For the suspend and resume opera-
tions, we conduct the experiments over both 802.11g WiFi
and USB. For self-cleaning, we perform the measurements

for WiFi and 3G. Energy consumption is measured using
the Nokia Energy Profiler utility [3].

Table 9 shows the energy consumed during each measure-
ment, and the percentage of battery power utilized. We
calculate the percentage from our energy measurements and
the battery capacity as reported in the device’s specifica-
tions. Although we assume a linear relationship between
energy consumption and battery lifetime, it has been shown
that batteries typically exhibit non-ideal properties [11], and
the relationship between energy consumption and battery
lifetime is typically non-linear. To ensure consistent mea-
surements, we fully charged the battery prior to each exper-
imental run. Still, it is likely that our battery percentage
calculations are affected by this non-ideality, and are only
included to provide an alternative representation of the en-
ergy costs of Horatio. As in the previous microbenchmark
experiments, we vary the synthetic dirty state from 1 MB to
500 MB for suspend and resume, and from 1 MB to 100 MB
for self-cleaning.

As the results show, connecting Horatio via USB is more
than twice as efficient than via WiFi during suspend, and
more than five times as efficient during resume. Two fac-
tors contribute to this result. First, WiFi communication
inherently requires more energy than USB. Second, when
connecting Horatio over USB we are able to treat it as a
mass-storage device rather than a networked host, allowing
us to shift all of the suspend and resume computation to
the client PC. The USB connection therefore allows us to
minimize the work that must be done by the Horatio device
during suspend and resume.

For self-cleaning, WiFi is more efficient than 3G by at least
a factor of five. This is due to the higher throughput of WiFi:

Dirty State Size
Operation Horatio Device 1 MB 10 MB 100 MB 500 MB
Suspend N95-WiFi 27.5 (1.0)[0.2%] 71.2 (3.9)[0.4%] 400.1 (1.4) [2.5%] 1788.8 (8.9)[11.0%]

Suspend N95-USB 12.0 (2.5)[0.1%] 31.3 (0.8)[0.2%] 146.8 (3.8) [0.9%] 608.5(14.2) [3.7%]

Resume N95-WiFi 507.1(40.6)[3.1%] 612.8 (1.0)[3.8%] 756.3 (15.5) [4.6%] 1455.7(33.4) [8.9%]

Resume N95-USB 95.5 (1.6)[0.6%] 96.8 (1.7)[0.6%] 120.0 (1.2) [0.7%] 226.6 (0.5) [1.4%]

Self-Clean N95-WiFi 35.7 (0.7)[0.2%] 102.6 (1.4)[0.6%] 915.6 (3.2) [5.6%] -
Self-Clean N95-3G 180.6 (4.3)[1.1%] 565.1(13.4)[3.5%] 4552.7(107.8)[27.9%] -

Results above are the mean of three measurements. Results expressed in Joules. Standard deviations are reported in parentheses.
Results in brackets expressed as percentage of battery life.

Table 9: Horatio Energy Consumption (Microbenchmarks)

self-cleaning times over WiFi are also shorter than over 3G
by a factor of five on average, enabling the Horatio device to
power its transmitter for much less total time. These results
clearly motivate the opportunistic use of WiFi. It would be
especially helpful in the case of large self-cleaning transfers,
since self-cleaning 100 MB over 3G consumes nearly 28% of
the device’s battery capacity. In contrast, a similar opera-
tion over WiFi consumes less than 6%. Overall, it is clear
that Horatio does increase the user’s mobility footprint with
respect to energy consumption. However, with opportunis-
tic use of WiFi this increase can be kept small, and is offset
by the fact that the user is not required to carry any other
devices to gain this benefit.

5.5 Eager State Propagation
To further reduce the suspend latency after a user com-

pletes her ISR session, our implementation includes a mecha-
nism for eager state propagation as described in Section 4.6.3.
The goal of this section is to quantify the benefit and cost
of this optimization in terms of the amount of dirty state
transferred from a client to Horatio. To accomplish this, we
use a set of state generation profiles, which are traces that
characterize the updates performed to a parcel’s state during
an ISR session. We gathered the state generation profiles on
four of the six workloads described in Section 5.1.2.

To capture a state generation profile for a specific work-
load, we execute the workload in a parcel while a background
task takes periodic snapshots of the parcel’s memory and
disk state. We pause the session during each snapshot to
ensure consistency. The resulting set of snapshots and ac-
companying traces allow us to deterministically replay the
state updates produced by the session.

Suspend Eager Lazy Cleaning
Workload State State State Cycles
Email 3.1 129.6 19.5 3.0
Word 1.7 220.8 44.1 3.3
Photo 1.6 199.1 28.4 6.7
Shop 29.3 485.7 44.4 11.0

Results presented are state sizes in MB and are the mean
of three measurements. The maximum standard deviations
for Suspend State, Eager State, and Cleaning Cycles were all
under 6% of the corresponding mean.

Table 10: Horatio Eager State Propagation Results

To evaluate eager state propagation, we replay our state
generation profiles on a real parcel while the eager propa-
gation mechanism transfers dirty memory and disk state to
Horatio in the background. We use the client PC described
in Section 5.1.3 and the microSD card as the Horatio device.

Table 10 presents the results. The second and third colum-
ns give the amount of state (in MB) transferred at and before

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10 11 S
D

irt
y

S
ta

te
 (

M
B

)

Cleaning Cycle

Email
Word
Photo
Shop

The distribution of state updates (in MB) for each workload
during each periodic cleaning cycle. A cleaning cycle starts
approximately one minute after the end of the preceding cycle.
Suspend time is marked by an “S” on the horizontal axis.

Figure 6: Workload Dirty State Generation

suspend, respectively, and correspond to the benefit and cost
associated with eager propagation. The fourth column gives
the amount of state that would be transferred at suspend
if eager state propagation were not used. Finally, the last
column gives the number of eager transfer cycles performed
by the client over the course of the session.

The table shows that the benefit of eager state propaga-
tion is very high for the four workloads tested. For the first
three, the amount of dirty state transferred at suspend is less
than 5 MB. The fourth workload contains a large number of
state updates late in the session, which do not have time to
propagate to Horatio before suspend, but are still less than
the amount transferred without eager propagation. Finally,
the ratio of the fourth column to the second column is a
good indication of the user-perceived improvement in per-
formance. In all four workload cases, a client would perceive
a performance benefit with Horatio.

As to cost, the total data transferred due to eager state
propagation is roughly 5 − 7 times that occurring without
eager transfer, except for the Email workload, where the dif-
ference is a factor of 11. From these results, we conclude that
eager state transfer is worth the cost: the amount of state
that must be transferred during suspend is dramatically re-
duced, in exchange for a reasonable increase in the amount
of data to transfer. We do not evaluate the energy costs of
eager state propagation since we assume that local power
(e.g., through USB, or wall socket) is available to Horatio
when state is being transferred to/from an ISR client.

Figure 6 presents the distribution of state updates (in MB)
for each of the four workloads for each periodic cleaning cy-

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

%
 o

f M
em

or
y

Lo
ca

tio
n

U
pd

at
es

Number of Updates

Email
Word
Photo
Shop

CDF of the number of updates to each 4 KB memory page,
for all memory updates within each workload.

Figure 7: Update Locality

cle. In the figure, one run from each workload is shown,
so that the results align directly with cleaning cycles, as
compared to the average results presented in Table 10. The
right-most set of bars represents the state transferred at sus-
pend time, which is marked by an “S” on the horizontal
axis. These results illustrate the fact that the rate of data
generation by typical user workloads underutilizes the avail-
able write capacity (approx. 360MB/min for microSD). Out
of the four shown, the Shop workload generates the largest
amount of updates, yet still only approaches 17% link uti-
lization. Shop also performs a large number of updates at
suspend time, relative to the other three workloads, and this
accounts for the differences shown in Table 10.

Figure 7 presents a CDF that illustrates the effects of up-
date locality during each of the four user workloads. We
measure this by periodically summing, at 1 minute inter-
vals, the number of updates to each memory location during
workload execution. For each workload, the graph plots the
CDF of the number of updates to a 4KB memory page, for
all memory updates. The Word workload exhibits the least
amount of update locality with approximately 77% of up-
dated memory pages only being updated 1 time and 94%
updated 3 or less times. The Email workload is similar to
the Word workload with 53% updated 1 time and 95% up-
dated 5 or less times. The Online workload exhibits the
largest amount of update locality with only 25% of updated
memory pages being updated 1 time and 95% being updated
11 or less times. Finally, the Photo workload is similar to
the Online workload with 48% updated 1 time and 95% up-
dated 12 or less times. From these results, we conclude that
by adaptively adjusting the eager propagation algorithm to
account for observed update locality during a session, the
costs of eager state propagation may be further reduced.

6. DISCUSSION AND FUTURE WORK

6.1 Smart Phones as Horatio Platforms
While our experimental results clearly indicate that the

current smart phone technology is already adequate to sup-
port Horatio, there are several ways in which this technology
could better serve it if improved. Connectivity and storage
performance are the two most critical factors on which Hor-
atio’s performance ultimately depends. Incorporating high-

speed flash storage should become standard in order to al-
low smart phones to benefit from most recent flash memory
technology. Supporting high-performance implementations
of the latest interconnects such as USB 2.0, WiMAX and
others allows phones to choose the most effective way to
perform self-cleaning at any given location. The phone’s net-
work stack also needs to be improved to fully exploit existing
technologies, such as WiFi and USB. For example, while the
Openmoko and the N95 both provide 802.11g, which is rated
at 54 Mbps, the bandwidth in our experiments maxed out
just under 6.8 Mbps. Fortunately, Horatio’s needs align well
with current trends towards transforming the smart phone
into a personal mobile multimedia entertainment platform.

6.2 VM State Size
In Section 4 of the paper, we describe the storage capa-

bility requirements for smart phones. Since current smart
phones support 16GB or more of storage via microSD, it is
realistic to assume that they provide ample capacity for VM
state modifications and caching. However, Horatio also sup-
ports operation when fully disconnected from the server. In
this mode, the entire VM state must be copied to Horatio in
advance of disconnection; this may require more than 16GB.
We expect current disk growth trends to continue, and newer
smart phones to support even larger storage capacity.

6.3 Impact of Network Connectivity
As discussed in Section 4, we assume strong connectiv-

ity between an ISR client and Horatio, while we allow for
the broadest range of connectivity options between Horatio
and the ISR server, and between the ISR client and ISR
server. In practice, both ISR and Horatio must be able to
handle and recover from poor connectivity conditions, in-
cluding disconnection, when they occur. Poor connectivity
between an ISR client and server may cause the user’s ses-
sion to experience a performance reduction, or in the case
of disconnection, may block the user session while the ISR
client waits for reconnection in order to fetch missing state
from the ISR server. Poor connectivity between Horatio and
an ISR server will impact self-cleaning performance, possibly
even pausing it in the event of a disconnect until the link has
been reestablished. Once reestablished, self-cleaning can be
resumed from where it left off.

Figure 5 shows that as the bandwidth between an ISR
client and server increases from 1 Mbps to 10 Mbps, resume
and suspend delays are reduced. This mitigates the need for
Horatio. Although Internet bandwidths will grow over time,
so will average VM sizes. It is difficult to predict the net
effect of these factors.

6.4 Resume Location Prediction
Resume latency can be further reduced if the identity of

the next resume site is known or can be correctly predicted.
ISR state can be proactively transferred to that site, effec-
tively warming ISR cache state. Potential sources of knowl-
edge for accurate prediction include a smart phone’s localiza-
tion device such as GPS, and personal calendar information.
We plan to explore this in our future work.

6.5 Horatio User Interface
We believe that a user’s experience with Horatio can be

further improved by providing a richer GUI. Such an inter-
face may provide users feedback and control over various
Horatio operations. An obvious candidate is the timing of

the suspend operation, where Horatio might be able to al-
low users to indicate an upper bound for the suspend latency.
This can potentially be enforced if Horatio’s client daemon is
allowed to take some action for the user (warning, slow down
or stop) when the amount of dirty state to be transferred
exceeds a threshold calculated based on the user’s suspend
time requirements and estimated transfer bandwidth.

7. CONCLUSION
We introduced Horatio, a system that leverages the stor-

age and Internet connectivity of smart phones to improve the
experience of ISR users in environments with poor wide-area
network bandwidth. Horatio treats smart phones as trusted
personal assistants that serve as self-cleaning portable caches
for VM state. Horatio reduces suspend latency by saving VM
state to the phone rather than directly to the server; simi-
larly, users can resume their session from Horatio. To reduce
vulnerability to loss or damage, Horatio opportunistically
uses the phone’s network connectivity to asynchronously pro-
pagate modified VM state to ISR servers (self-cleaning).

Our experiments with the Horatio prototype running on
the Nokia N95 and the Openmoko Neo FreeRunner smart
phones show that Horatio reduces resume and suspend la-
tencies by up to 98% and 97%, respectively. For example,
Horatio reduces the suspend latency from 38.3 minutes (for
a demanding workload) or 3.3 minutes (for a light workload)
down to 1.2 minutes. While the performance of Horatio on
existing phones is adequate, our experiments also show that
improvements in the phones’ protocol stacks and software
environments could further improve Horatio’s performance
by an order of magnitude.

8. ACKNOWLEDGEMENTS
We thank our shepherd Ed Nightingale and the anony-

mous reviewers for their valuable comments and suggestions.
This work is supported in part by the National Science Foun-
dation through grant numbers CNS-0520123 and CNS-05090-
04. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF, Carnegie Mellon
University, Rutgers University, or the University of Toronto.
Internet Suspend/ResumeR© (ISR) and OpenISRR© are regis-
tered trademarks of Carnegie Mellon University.

9. REFERENCES
[1] GoToMyPC home page. http://www.gotomypc.com,

1997-2008.

[2] MojoPac home page. http://www.mojopac.com, 2008.

[3] Nokia Energy Profiler home page.
http://www.forum.nokia.com/Resources_and_

Information/Explore/Development_Process_and_

User_Experience/Power_Management/Nokia_Energy_

Profiler_Quick_Start.xhtml, 2008.

[4] Balan, R. K., Flinn, J., Satyanarayanan, M.,
Sinnamohideen, S., and Yang, H.-I. The Case for
Cyber Foraging. In Proceedings of the 10th ACM
SIGOPS European Workshop (Saint-Emilion, France,
July 2002).

[5] Cáceres, R., Carter, C., Narayanaswami, C.,
and Raghunath, M. Reincarnating PCs with
Portable SoulPads. In MobiSys ’05: Proceedings of the
3rd International Conference on Mobile Systems,
Applications, and Services (Seattle, WA, 2005).

[6] Garriss, S., Cáceres, R., Berger, S., Sailer, R.,
van Doorn, L., and Zhang, X. Trustworthy and
Personalized Computing on Public Kiosks. In
Proceedings of the 6th International Conference on
Mobile Systems, Applications, and Services
(Breckenridge, CO, June 2008).

[7] Kim, M., Cox, L. P., and Noble, B. D. Safety,
Visibility, and Performance in a Wide-Area File
System. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies (Monterey, CA,
January 2002).

[8] Kistler, J., and Satyanarayanan, M.
Disconnected operation in the Coda file system. ACM
Transactions on Computer Systems 10, 1 (February
1992).

[9] Kozuch, M., Satyanarayanan, M. Internet
Suspend/Resume. In Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and
Applications (Callicoon, NY, June 2002).

[10] Lagar-Cavilla, H. A., Tolia, N., de Lara, E.,
Satyanarayanan, M., and O’Hallaron, D.
Interactive Resource-Intensive Applications Made
Easy. In Proceedings of the 8th ACM/IFIP/USENIX
International Middleware Conference (Newport Beach,
CA, Nov. 2007).

[11] Martin, T. L., and Siewiorek, D. P. Non-ideal
battery properties and low power operation in
wearable computing. In ISWC ’99: Proceedings of the
3rd IEEE International Symposium on Wearable
Computers (Washington, DC, USA, 1999), IEEE
Computer Society, p. 101.

[12] Ravi, N., Narayanaswami, C., Raghunath, M.,
and Rosu, M.-C. Securing pocket hard drives. IEEE
Pervasive Computing 6, 4 (2007), 18–23.

[13] Satyanarayanan, M., Gilbert, B., Toups, M.,
Tolia, N., Surie, A., O’Hallaron, D. R.,
Wolbach, A., Harkes, J., Perrig, A., Farber,
D. J., Kozuch, M. A., Helfrich, C. J., Nath, P.,
and Lagar-Cavilla, H. A. Pervasive Personal
Computing in an Internet Suspend/Resume System.
IEEE Internet Computing 11, 2 (2007), 16–25.

[14] Surie, A., Perrig, A., Satyanarayanan, M., and
Farber, D. J. Rapid Trust Establishment for
Pervasive Personal Computing. IEEE Pervasive
Computing 6, 4 (2007).

[15] Tolia, N., Harkes, J., Kozuch, M., and
Satyanarayanan, M. Integrating Portable and
Distributed Storage. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies
(San Francisco, CA, March 2004).

[16] Tolia, N., Kaminsky, M., Andersen, D. G., and
Patil, S. An Architecture for Internet Data Transfer.
In Proceedings of the 3rd Symposium on Networked
Systems Design and Implementation (NSDI ’06) (San
Jose, CA, May 2006).

[17] Tolia, N., Andersen, D., Satyanarayanan, M.
Quantifying Interactive Experience on Thin Clients.
IEEE Computer 39, 3 (Mar. 2006).

