What is Good Systems Research?

Liviu Iftode
Rutgers University
What is Systems Research?

- **Broad definition**: all core components of a computer system
 - computer architecture, operating system, languages and compilers, networking, fault-tolerance, systems security

- **Narrow definition**
 - operating systems and distributed systems

- **Challenging research field**
 - Prototype implementation and evaluation
 - Large teams (see SOSP’09)
 - A lot of “hidden work”
 - Boring sometime

Is this computer science or engineering?
A Changing Research Field

- Two driving forces
 - new technologies
 - new applications

- Perspectives shift
 - performance & scalability
 - reliability, availability and survivability
 - maintainability
 - manageability
 - security
 - usability
What drives systems research towards success or failure?
Where do novel ideas come from and when?
What makes systems research results resist longer?
How to anticipate next “fashion” in systems?
Evolution of Research Themes

- Once upon a time is was UNIX
- Parallel systems
- Distributed and cluster-based systems
- Internet systems
- Storage systems
- Peer-to-Peer systems
- Embedded/Sensor systems
- Virtual machines
- Transactional memory
- Systems for multi-core processors
- Pervasive/Ubiquitous/Cyber-Physical systems
- Cloud computing systems
Talk Roadmap

• Retrospective view of 10 editions of the Symposium on Operating Systems Principles (SOSP)

• Discuss
 ◦ main topics
 ◦ selected papers
 ◦ lessons to take away
 ◦ examples of good/bad systems work
 ◦ they are personal opinions
Ten SOSP Conferences

- SOSP’91, Pacific Grove, CA
- SOSP’93, Asheville, NC
- SOSP’95, Copper Mountain, CO
- SOSP’97, Saint-Malo, France
- SOSP’99, Kiawah Island, SC
- SOSP’01, Chateau Lake Louise, Canada
- SOSP’03, Bolton Landing, NY
- SOSP’05, Brighton, UK
- SOSP’07, Stevenson, WA
- SOSP’09, Big Sky, MT
Main topic: File systems
- Log-Structured File System
- Semantic File Systems
- Coda

On the rise:
- Multi-threading: Scheduler Activations
- Multiprocessors: Munin (software DSM)
- Real time/Multimedia

New problems:
- Networking: Automated Reconfiguration
- Security: Authentication
- Reliability: Replication in File Systems
Log-Structured File System (LFS)

- **Problem:**
 - More memory -> larger caches -> disk traffic dominated by writes
 - Writes are synchronous and dominated by small accesses (metadata) -> slow

- **Solution:**
 - Buffer file changes together (data and metadata) and write them all in a single large disk write (log)

- **Advantages:**
 - Fast (practically eliminates the seek operation)
 - Simple recovery

- **Secondary issues:**
 - How to locate file blocks
 - How to manage the free space
LFS -
An Example of Good Systems Research

- Driven by awareness of the technology trend
- A radical depart from traditional approach
- Maintains compatibility with traditional approach
- Good model analysis
- Solid implementation and evaluation
- Long lasting impact (see SOSP’09)
Problem:
- Mobile computing causes disconnections
- File system should remain usable in the presence of disconnections

Basic Idea
- Availability more important than consistency

Solution
- Cache whole files in advance (best-effort hoarding)
- Emulate server at client when disconnected
- Reintegration upon reconnection: resolve conflicts

Advantage
- Simple, feasible, usable
- Addresses the common case (no file sharing)
Real problems but too complex solutions

- **Scheduler Activations**
 - Problem: both user-level and kernel-level threads have limitations
 - Solution: a new kernel interface for user-level threads

- **Munin**: the first release-consistency software DSM
 - Problem: too much false sharing due to large coherence granularity
 - Solution: convince programmer to accept a relaxed consistency model in order to get acceptable performance
SOSP’91 Summary

- New directions triggered by new technologies:
 - memory capacity is increasing
 - mobility

- Main application domain (high-performance computing) is offered too complex solutions
 - scheduler activations
 - release-consistency software DSM
Interesting new problems

- Make networking fast using *Fbufs*
- Models for distributed systems: *Limits of causality and total ordered communication*
- *Location information in ubiquitous computing*
Main topic: OS structure and performance
- Exokernel and SPIN
- Impact of Architecture on OS Performance

On the rise:
- Reliability: Hypervisor, Hive, Logged VM
- Mobility: Bayou

Still of interest
- File systems: xFS, Informed Prefetching and Caching
- Distributed memory: Global Memory, CRL

Follow-ups
- Weak connectivity

New problems
- User-level communication: U-Net
- 64-bit address spaces
New OS structures and OS performance

- **Problem**
 - OS has become too big, rigid and hard to manage
 - Performance does not increase with raw hardware performance

- **SOSP’95 debate**
 - Liedtke: Micro-kernel is fine, just needs a good implementation
 - Kashoook: *Exokernel* - Nano-kernels with application-controlled resource management
 - Bernshad: *SPIN* - Safe extensibility through downloadable modules written in a type-safe language

- **What happened after**
 - Complex solutions with hardly feasible assumptions
 - Influence on future OS design happened but not clear how much
Problems
- OS often fail, how to make applications survive?

Papers anticipated the VMM research (a decade later)

Hypervisor-based fault-tolerance
- Interpose a VM software layer between hardware and OS
- Log non-deterministic events to mirror state of a primary computer onto a backup
- Continued a decade later with the ReVirt but applied to intrusion analysis

Hive
- Fault-containment using a cellular OS
- Better resource allocation
- A decade later: VMware Inc
OS Research for Cluster Computing

- OS research influenced by cluster computing demands for performance and programmability
 - TCP/IP: too heavy for high-performance interconnects
 - Message-based programming: too difficult for large scale

- User-level communication: U-Net
 - Simple and efficient but requires RDMA support
 - Today: Infiniband for network storage

- CRL software DSM and global memory
 - Make it simple: no relaxed consistency
 - Still did not make it
When it is too much complexity

• xFS
 ◦ A completely decentralized distributed file system
 ◦ Wonderful engineering work

• Bayou
 ◦ Eventual consistency using an anti-entropy protocol for update propagation
 ◦ Automatic resolution of update conflicts
 ◦ Why did Coda and not Bayou survive?
SOSP’95 Summary

- Concern about OS structure and performance
- Research in OS reliability anticipates new challenges: fault isolation and containment (SOSP’07, SOSP’09)
- Cluster computing only half-way successful in OS research
- Research in mobility and file systems propose too complex solutions
- Follow-up on your prior research may not be a bad idea
On the rise
◦ OS support for Internet services: BASE instead of ACID, Security in Java
◦ Real-time scheduling for multimedia
◦ Application Adaptation for Mobility: Agile

Still around
◦ Running commodity OSes on multiprocessors: Disco
◦ Software DSM: Shasta, Cashmere
◦ Distributed file systems: Frangipani
◦ OS performance profiling

New problems:
◦ Decentralized information flow-control
◦ Dynamic data race detection: Eraser

Follow-up
◦ Scalability in Exokernel
◦ Flexible update propagation in Bayou
New Research Problems

- Decentralized Information Flow Control
 - Privacy becomes a concern in client-server interaction
 - How to share information among systems with mutual distrust

- Detection of data races in multithreaded programs
 - Bugs caused by programming error to follow a locking discipline
 - Exposure depends on scheduling non-determinism
 - Notorious hard to detect, reproduce, locate and eliminate
 - Race-freedom not enough for correctness: atomicity also necessary (see ASPLOS’06)

- Both papers prevent programming errors to cause damages, hot field today
The Internet changes the OS

- Internet services require OS changes
 - Problem:
 - ACID (atomicity, consistency, isolation, durability) data semantics is hard to support and not always required
 - Availability is more important
 - Solution
 - Relax data semantics for better availability
 - BASE (basically available, soft state, eventual consistency)
- Internet Services: significant impact on OS research
 - LRP, Scout-OS, LARD, IO-Lite, Resource Containers
 - Security
SOSP’97 Summary

- Internet service applications are about to become the next main application domain.
- High-performance computing makes its last strong appearance in OS research (two DSM papers!)
- A slowly but steadily emerging field: detection of software bug (still present at SOSP’09)
Main topic: Internet Services
- Availability & Scalability: Porcupine
- Negative result: Cooperative web proxy caching
- Distributed VM for networked computers
- Soft-timers for network processing

On the rise
- Security: Separating key management from FS security
- Networking: Intentional Naming System, Click

Still there
- User errors: When to forget in Elephant FS
- Real time OS issues

New
- Energy: Adaptation for mobile applications

Follow-up
- Resource management in Cellular Disco
New Research Problems

- The email is important
- Battery lifetime is also important: adapt applications
- User mistakes must be addressed by the OS
 - *Elephant*: Let system decide when/what to delete
- Interrupts are expensive for network servers
 - *Use soft-timers*
- Security for global file systems
 - *SFS*: Self-certifying pathnames eliminate need for key management
- Naming in dynamic and mobile networks
 - *INS*: route messages by names
- Flexible network routers
 - *Click*: implement routers in software
Why researching the email?

- Email is important
 - Real demand

- Email is hard
 - Write intensive
 - Low locality

- Email is easy
 - Well defined API
 - Large parallelism
 - Weak consistency
Main topic: Peer-to-Peer and Overlay Networks
- P2P storage systems: PAST, CFS
- Resilient Overlay Networks (RON)

On the rise
- Software Bugs: Bugs as Inconsistent Behavior, OS Errors

Still around
- Internet Services: Continuous Consistency, Event-Driven Programming
- OS adaptation: Gray-Box
- File systems and networking: Low-bandwidth Network FS

New problems:
- Energy conservation in hosting centers
- Sensor Networks: Low Level Naming

Follow-ups
- Privacy among untrusted hosts: Secure Programming Partitioning
P2P “hijacked” the OS research

- **Decentralized storage systems**
 - Main properties: scalable, highly available
 - Use scalable routing and lookup substrates (*Pastry, Chord*)
 - What is the OS problem they solve?

- **Resilient Overlay Networking (RON)**
 - Problem: Internet routing problem
 - Solution: Application-layer overlay on top of IP
 - Advantage claim: more resilient than IP routing
 - What is the OS problem?

- **Are sensor networks becoming the next “hijacker”?**
Practical Intellectual Challenges

- Concurrency programming debate:
 - *Seda*: Threads or Staged Event-Driven?
 - Event-driven manages load better
 - Practical

- How to transfer file over a low-bandwidth connection?
 - Exploit similarities between files and file versions
 - Avoid sending data blocks over the network if they are already in cache at server/client
...and Less Practical Intellectual Challenges

- **Continuous consistency**
 - Replication for availability makes consistency hard to strictly maintain
 - Trade consistency for availability
 - Metric: max deviation from strong consistency on replica-basis

- **Gray Box**
 - How to acquire OS internal state info and control without modifying the OS?
 - Interpose information&control layers between client and the OS to exploit knowledge of the algorithms used by the box
 - Successfully used for controlling file caching, disk layout, etc
Software Bugs

- **Problem**
 - How to determine the correctness rules when programmers do not specify them

- **Solution**
 - Infer rules as “programmer beliefs” from static analysis
 - Cross-check them for contradiction

- **Evaluation**
 - Hundreds bugs are found in Linux: better than manual

- **Question**
 - Dynamic monitoring (*Eraser*) or static analysis?

- **Anticipate more papers on OS errors at next SOSPs**
 - Device drivers have error rate 3-7 times higher than the rest of the kernel (see *Nooks* at next SOSP)
New Problems

- **Conserving Energy in Hosting Centers**
 - Problem: Energy becomes the driving resource management issue
 - Solution: Adaptation to load by dynamically resizing the active server set with a certain degradation of service

- **Sensor Networks**
 - Low-level naming based on attributes relevant to the application and external to the network topology (like INS but not over IP)
 - In-network processing of data: directed diffusion
 - What is the OS problem?
Main topic: **OS Robustness**
- Execute untrusted code: *Model-Carrying Code*
- VMM: *Xen, Untrusted on XOM, Terra*
- Handle bugs in OS drivers: *Nooks*
- Race condition detection: *RacerX*

Still around
- File Systems: *Google File System*

Follow-ups
- Policies into Mechanisms using *Infokernel*
- Overlay networks and P2P
New and old hardware inspires OS research

• Problem
 ◦ OS not trusted

• Three solutions
 ◦ Virtual Machine Monitors: Xen
 ◦ OS over XOM processor architecture
 • HW trusted to execute tamper-resistant SW
 ◦ OS over a trusted VMM (Terra)
 • Tamper-resistant HW partitioned in multiple isolated VMs
 • Applications can cryptographically authenticate the software stack to remote parties (attestation)
Growing interest on software bugs

- **Nooks**
 - Problem
 - faulty drivers
 - Solution
 - Fault resistance (survivability) not fault tolerance (reliability)
 - Isolate driver failures with lightweight protection domain to prevent kernel corruption

- **Backtracker**
 - Problem: analyze intrusions is hard
 - Solution: VM to log events and objects in dependency graphs
 - Remember Hypervisor at SOSP’95?

- Static detection of race conditions and deadlocks: RacerX
Main topic: OS Security and Robustness
- OS integrity without HW: Pionner
- Intrusion Detection and Containment: Vulnerability-Predicates, Vigilante
- Software bugs: Asbestos, Rx

Still around
- Declarative overlays
- Byzantine fault tolerance
- Semantics in File Systems: Connections (remember SOSP’91?)
- Race detection with adaptive tracking: RaceTrack

Follow-ups
- IRON File Systems
Pionner: No hardware inspires OS

- **The Intellectual Problem:**
 - Verify code integrity
 - No trusted hardware support

- **Solution**
 - All-software based code attestation using integrity measurements
 - Expected time of checksum code execution

- **Assumption**
 - Client (dispatcher) knows the configuration of the untrusted hardware
Software bugs: New Approaches

- **Labels&Events**
 - **Problem**
 - Current OS abstractions do not provide sufficient flexible isolation between different users
 - **Solution**
 - OS support for information flow control

- **Rx: treating bugs as allergies**
 - **Problem**
 - How to survive software failures safely
 - **Idea**
 - Bug exposure depends on execution environment
 - **Solution**
 - Rollback, modify environment and re-execute
A New OS Problem: Intrusion Detection

- Detecting intrusions using vulnerabilities predicates
 - Problem
 - Prevent software bugs to be exploited by the attacker until they are fixed
 - Solution
 - Define predicates to monitor intrusions that trigger the vulnerability
 - Use VMM: IntroVirt

- End-to-end containment of internet worms
 - Problem
 - Internet worms containment must be done automatically because they spread too fast
 - Solution
 - Collaborative worm detection and containment
 - Self-certifying alerts using proof of vulnerability (since hosts do not trust each other)
 - Use SCA to generate filters to block infection
Main topic: OS Robustness
- Survive with vulnerabilities by blocking bad input: Bouncer

“Back to the Future”: Byzantine Fault Tolerance

Still around
- Information flow-control: for the OS, for web applications
- Energy
- Virtual machine for commodity OS security: SecVisor – A Tiny Hypervisor
- File systems: Dynamo (Amazon’s key-value store)

New problems:
- Web and OS: MashupOS
- Transaction Memory and the OS: TxLinux
- OS maintenance: upgrade and configuration management
- Storage of interaction: DejaView

Follow-ups
- Software bugs: MUVI
Interesting novel projects

- **MashupOS**
 - Problem:
 - Web 2.0 applications are becoming complex
 - Browsers are left behind
 - Solution:
 - browser-based OS with support for protection and communication

- **TxLinux**
 - A new technology: hardware transactional memory
 - How to make OS locks work with transactions?
 - How to integrate transactions with OS scheduler
 - A well-done “traditional” OS work
“Rethinking” existing solutions in a different light
- FAWN: clusters of power-efficient well-balanced nodes
- Multi-kernel: OS structure for multicore systems
- BPFS: byte-addressable file system using BPRAM

Important result
- Formal verification of an OS kernel

Large-scale real experience
- Debugging at Microsoft

Survivability
- Drivers: tolerate hardware failures in software
- Surviving sensor networks software failures

Practical research:
- Drivers, debugging, scalable software routers
- Solutions for emerging hardware
- Machine learning and data mining techniques applied to OS
- Large authorship
- Strong presence of Microsoft Research
Some general observations

- A favorite theme
 - Created by a new technology, a new application domain
 - Sometimes its importance grows slowly
 - Dominates 1-2 SOSP cycles
 - After that, proposed solutions become complex and less influential
- Several permanent themes
 - File systems
 - Real time
 - Byzantine fault tolerance (BFT)
 - Software bugs?
- OS research hijacking?
 - Networking and sensor networks
 - Software engineering and compilers
 - Intrusion detection
- Model analysis becomes a necessary part of OS research
Some final tips

- Have a problem before having a solution
- Make sure that it is a real problem
 - “Your research must be a painkiller not a vitamin”
- Prior work
 - Read papers before you write
- Build prototype
- Evaluate with realistic load
 - Negative results are as valuable as positive results
- Work in a team
- Spend time on paper writing and presentation
- Evaluate the surprise factor (the “wow factor”) of your contribution
“Suggested” areas

- OS survivability, manageability and security
- Cyber-physical systems (“outdoor computing”)
- Cloud computing systems
- Systems for smart phones
- Systems research opportunities in online social networking?
- Watch Google: Android, Chrome OS
Thank you!