Optimal routing of autonomous vehicles in stochastic environments

George V. Moustakides
University of Patras, Greece
& Columbia University, USA
Outline

- Routing and type of environments
- Routing of “unintelligent” vehicles
- Routing of “intelligent” vehicles
 - A cost based optimization problem
 - Optimal solution for “impatient” vehicles
 - Optimal solution for “patient” vehicles
- Extensions
Routing and type of environments

Deterministic / Static

R2D2

Obi One Kenobi
Stochastic / Static

This specific obstacle geometry appears 17% of the time

To each obstacle geometry we assign a probability of occurrence
To each transition of obstacle geometry we assign a probability (transition probability)

Markovian modeling of obstacle dynamics

\[P(s_j | s_i) \]
Routing of “unintelligent” vehicles

If the only available information is the transition probabilities of the obstacle geometries, then there exists an **optimum route** that can be precomputed.

Optimality criteria

Cost based: every action, collision has a cost. **Minimize expected cost.**
Routing of “intelligent” vehicles

R2D2 can identify obstacles inside a finite visual horizon.

Goal: Come up with an optimum route tracing scheme that combines prior and sequential information.
Discrete Space and Time

Obstacles:
Can move freely only **up** and **down**.

The dynamics between different columns are statistically independent. **Markovian model for each column.**
Consider the \(l \)-th column

The obstacle geometries constitute the possible states of the Markov process.

\[
\begin{align*}
 &s_0 & s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\
\end{align*}
\]

We assign transition probabilities: \(P_l(s_j|s_i) \) and compute the stationary probabilities \(\pi_l(s_j) \):

\[
\pi_l(s_j) = \sum_{s_i} P_l(s_j|s_i) \pi_l(s_i)
\]
Vehicle:
Is allowed either to **wait** at the current node or **move forward to any node** of the **next** column.

Its visual horizon extends to the next column and **recognizes the specific obstacle geometry**.
The vehicle observes state s_i of the next column. While the vehicle moves to the next column, the state of the next column changes to s_j.

This can result in collision.
Vehicle is at node m of column l and observes state s_i of column $l+1$. What should the next action be?
For each column we must provide an Action Table:

<table>
<thead>
<tr>
<th>State</th>
<th>Node</th>
<th>(S_0)</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>1</td>
<td>(w)</td>
<td>3</td>
<td>(w)</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>(w)</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>3</td>
<td>(w)</td>
<td>(4)</td>
<td>(w)</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>(w)</td>
<td>(w)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

These tables must be selected **optimally!!**
A cost based approach
To every action and event we assign a cost:

- **Displacement cost:**
 Moving from node m of column l
 to node n of column $l+1$, has a cost $c_l(m,n)$.
 Consider $c_l(m,n) = c_D$.

- **Waiting cost:**
 Waiting at node m of column l has a cost $c_l(m)$.
 Consider $c_l(m) = c_W$.

- **Collision cost:**
 Colliding at node n of column l has a cost $c_l(n)$.
 Consider $c_l(n) = c_C$.
To each collection of Action Tables there corresponds an **average cost**.

The goal is to find the Action Tables that **Minimize the Average Cost**.

These problems are conventionally solved with stochastic optimization techniques and in particular with the help of **Stochastic Dynamic Programming**.
Optimal solution for “impatient” vehicles

No waiting is allowed!!
At every time instant the vehicle moves forward to the next column.

The optimum solution will be obtained by construction.

\[V_i(m) : \text{optimum average residual cost} \text{ from node } m, \text{ column } l, \text{ till the end.} \]
$V_0(1)$ is the optimum average cost of the original problem.

Key step in defining the optimum Action Tables is the determination of the (backward) evolution of $V_i(m)$.
$V_n(m) = CD$
$V_N(m) = c_D$

Assume available $V_{l+1}(n)$ for any node n in column $l+1$.

We will then compute $V_l(m)$ for any node m in column l.

- Vehicle from node m can move to ANY node n of the next column.
- Vehicle when at node m, can observe state s_i of the next column.
- State s_i can change to ANY state s_j.

$V_l(m)$: optimum average residual cost (goal).

$V_l(m \mid s_i)$: optimum average residual cost when state s_i is observed.

$V_l(m \mid s_i, n)$: optimum average residual cost when state s_i is observed and the vehicle decides to move to node n of the next column.

$$V_l(m \mid s_i, n) = c_D + c_C \sum_{s_j \in n} P_{l+1}(s_j \mid s_i) + V_{l+1}(n)$$

Best displacement when at m and observe s_i:

$$V_l(m \mid s_i) = \min_n V_l(m \mid s_i, n)$$

$$n_{op} = \arg \min_n V_l(m \mid s_i, n)$$
By computing $V_l(m \mid s_i)$ from $V_l(m \mid s_i, n)$ we construct the Optimum Action Tables.

$$V_l(m) = \sum_{s_i} \pi_{l+1}(s_i)V_l(m \mid s_i)$$
With visual horizon:

\[V_l(m|s_i, n) = c_D + c_C \sum_{s_j \in n} P_{l+1}(s_j|s_i) + V_{l+1}(n) \]

\[V_l(m|s_i) = \min_n V_l(m|s_i, n) \]

\[V_l(m) = \sum_{s_i} \pi_{l+1}(s_i) V_l(m|s_i) \]

Without visual horizon:

\[V_l(m|n) = c_D + c_C \sum_{s_j \in n} \pi_{l+1}(s_j) + V_{l+1}(n) \]

\[V_l(m) = \min_n V_l(m|n) \]
Optimal solution for “patient” vehicles

Waiting is allowed!!
We also assume that no collision is possible when the vehicle waits at a node.

\[V_l(m|s_i, n) = c_D + c_c \sum_{s_j \in n} P_{l+1}(s_j|s_i) + V_{l+1}(m) \]

\[V_l(m|w) = c_W + V_l(m) \]

\[V_l(m|s_i) = \min \left\{ \min_n V_l(m|s_j|n), V_l(m|w) \right\} \]

\[V_l(m) = \sum_{s_i} \pi_{l+1}(s_i) V_l(m|s_i) \]
Define: $\tilde{V}_l(m|s_i) = \min_n V_l(m|s_i, n)$

Without loss of generality assume the ordering:

$\tilde{V}_l(m|s_0) \leq \tilde{V}_l(m|s_1) \leq \cdots \leq \tilde{V}_l(m|s_L)$

For $0 \leq n \leq L$, define the increasing sequence:

$F_n = \sum_{i=0}^{n-1} [\tilde{V}_l(m|s_n) - \tilde{V}_l(m|s_i)] \pi_{l+1}(s_i)$

Let $0 \leq K \leq L$ be the largest integer satisfying $c_W \geq F_K$

$V_l(m) = \frac{c_W + \sum_{i=0}^{K} [\tilde{V}_l(m|s_i) - c_W] \pi_{l+1}(s_i)}{\sum_{i=0}^{K} \pi_{l+1}(s_i)}$
Extensions

- Collisions may occur during waiting

\[V_i(m|w) = c_W + V_i(m) \]

\[V_i(m|w) = c_W + c_C P_i(\text{Collision}) + V_i(m) \]

\[V_i(m|w) = c_W + c_C \sum_{s^l_j \in m} \pi_i(s^l_j) + V_i(m) \]

\[V_i(m|s^l_k, w) = c_W + c_C \sum_{s^l_j \in m} P_i(s^l_j|s^l_k) + V_i(m) \]
Vehicle can have a larger visual horizon

State can contain information other than location like: speed, acceleration, etc.

Obstacles and Vehicle can move in any direction (even backwards)

On line estimation (identification) of state elements (for example position, speed and acceleration)