Optimum CUSUM Tests
for
Detecting Changes in
Continuous Time Processes

George V. Moustakides
INRIA, Rennes, France
Outline

- The change detection problem
- Overview of existing results
- Lorden’s criterion and the CUSUM test
- A modified Lorden criterion
- CUSUM tests for Ito processes
- Extensions
The change detection problem

We are observing sequentially a process \(\{ \xi_t \} \) with the following statistics:

\[
\begin{align*}
\xi_t & \sim P_\infty \quad \text{for } 0 \leq t \leq \tau \\
& \sim P_0 \quad \text{for } \tau < t
\end{align*}
\]

Goal: Detect the change time \(\tau \) “as soon as possible”

- Change time \(\tau \): deterministic (but unknown) or random
- Probability measures \(P_\infty, P_0 \): known

Applications include: systems monitoring; quality control; financial decision making; remote sensing (radar, sonar, seismology); speech/image/video segmentation; …
The observation process \(\{ \xi_t \} \) is available sequentially. This can be expressed through the filtration:

\[
\mathcal{F}_t = \sigma\{ \xi_s : 0 < s \leq t \}.
\]

- Interested in **sequential detection schemes**. At every time instant \(t \) we perform a test to decide whether to stop and declare an alarm or continue sampling. The test at time \(t \) must be based on the available information up to time \(t \).

- Any sequential detection scheme can be represented by a **stopping time** \(T \) adapted to the filtration \(\mathcal{F}_t \) (the time we stop and declare an alarm).
Overview of existing results

P_τ: the probability measure induced, when the change takes place at time τ

$E_{\tau}[.]$: the corresponding expectation

P_∞: all data under nominal regime

P_0: all data under alternative regime

Optimality criteria

They must take into account two quantities:
- The detection delay $T - \tau$
- The frequency of false alarms

Possible approaches: **Baysian and Min-max**
Baysian approach (Shiryayev 1978)

The change time τ is random with exponential prior.

For any stopping time T define the criterion:

$$J(T) = c \mathbb{E}[(T - \tau)^+] + \mathbb{P}[T < \tau]$$

Optimization problem: $\inf_T J(T)$

Compute the statistics: $\pi_t = \mathbb{P}[\tau \leq t \mid \mathcal{F}_t]$;

and stop: $T_S = \inf_t \{ t : \pi_t \geq \nu \}$

- **Discrete time:** when $\{\xi_n\}$ is i.i.d. and there is a change in the pdf from $f_{\infty}(\xi)$ to $f_0(\xi)$.

- **Continuous time:** when $\{\xi_t\}$ is a Brownian Motion and there is a change in the constant drift from μ_{∞} to μ_0.

Min-max approach (Shiryayev-Roberts-Pollak)

The change time τ is deterministic but unknown.

For any stopping time T define the criterion:

$$J(T) = \sup_{\tau} \mathbb{E}_{\tau}[(T - \tau)^+ | T > \tau]$$

Optimization problem:

$$\inf_T J(T);$$

subject to:

$$\mathbb{E}_\infty[T] \geq \gamma$$

Discrete time: when $\{\xi_n\}$ is i.i.d. and there is a change in the pdf from $f_\infty(\xi)$ to $f_0(\xi)$.

Compute the statistics:

$$S'_n = (S'_{n-1} + 1) \frac{f_0(\xi_n)}{f_\infty(\xi_n)}.$$

and stop (Yakir 1997): $$T_{SRP} = \inf_n \{ n: S'_n \geq \nu \}$$
Lorden’s criterion and the CUSUM test

Alternative min-max approach (Lorden 1971):

The change time τ is deterministic and unknown. For any stopping time T define the criterion:

$$J(T) = \sup_{\tau} \text{essup} \ E_\tau[(T - \tau)^+ | F_\tau]$$

Optimization problem: $\inf_T J(T)$;
subject to: $E_\infty[T] \geq \gamma$.

The test closely related to Lorden’s criterion and being the most popular test for the change detection problem in practice, is the **Cumulative Sum (CUSUM)** test.
Define the CUSUM process y_t as follows:

$$y_t = u_t - m_t$$

where

$$u_t = \log\left(\frac{d\mathbb{P}_0}{d\mathbb{P}_\infty} (\mathcal{F}_t) \right)$$

$$m_t = \inf_{0 \leq s \leq t} u_s.$$

The CUSUM stopping time (Page 1954):

$$T_C = \inf_{t} \left\{ t : y_t \geq \nu \right\}$$

- **Discrete time**: when $\{\xi_n\}$ is i.i.d. before and after the change (Moustakides 1986, Ritov 1990).

- **Continuous time**: when $\{\xi_t\}$ is a Brownian Motion with constant drift before and after the change (Shiryayev 1996, Beibel 1996).
A modified Lorden criterion

We intend to extend the optimality of CUSUM to detection of changes in Ito processes by modifying Lorden’s criterion using the Kullback-Leibler Divergence (KLD).

Similar extension exists for the Sequential Probability Ratio Test (SPRT), applied in hypotheses testing, since 1978 (Liptser and Shiryayev)

The observation process \(\{\xi_t\} \) satisfies the following sde:

\[
d\xi_t = \begin{cases}
 dw_t & 0 \leq t \leq \tau \\
 \alpha_t \, dt + dw_t & \tau < t
\end{cases}
\]

\(\{w_t\} \) standard Brownian Motion

\(\{\alpha_t\} \) adapted to the history \(\mathcal{F}_t = \sigma\{\xi_s : 0 \leq s \leq t\} \)

If \(\alpha_t = \alpha(\xi_t) \), then \(\xi_t \) is a diffusion process for \(t > \tau \).
To \(\{\xi_t\} \) we correspond the following process \(\{u_t\} \)

\[
d u_t = \alpha_t \, d\xi_t - 0.5 \alpha_t^2 \, dt.
\]

We would like: \(u_t = \log\left(\frac{d\mathbb{P}_0}{d\mathbb{P}_\infty}(\mathcal{F}_t) \right) \).

We need the following conditions:

1. \(\mathbb{P}_0\left[\int_0^t \alpha_s^2 \, ds < \infty \right] = \mathbb{P}_\infty\left[\int_0^t \alpha_s^2 \, ds < \infty \right] = 1 \)

2. A “Novikov” condition

3. \(\mathbb{P}_0\left[\int_0^\infty \alpha_s^2 \, ds = \infty \right] = \mathbb{P}_\infty\left[\int_0^\infty \alpha_s^2 \, ds = \infty \right] = 1 \)
From Condition 1&2 we have validity of Girsanov’s theorem:

\[
\frac{d\mathbb{P}_0}{d\mathbb{P}_\infty}(\mathcal{F}_t) = e^{u_t} \quad \frac{d\mathbb{P}_\tau}{d\mathbb{P}_\infty}(\mathcal{F}_t) = e^{u_t-u_\tau}
\]

The Kullback-Leibler Divergence can then be written as:

\[
\mathbb{E}_\tau\left[\log\left(\frac{d\mathbb{P}_\tau}{d\mathbb{P}_\infty}(\mathcal{F}_t) \right) \Big| \mathcal{F}_\tau \right] = \mathbb{E}_\tau\left[\int_\tau^t \alpha_s \, dw_s + 0.5 \int_\tau^t \alpha_s^2 \, ds \Big| \mathcal{F}_\tau \right] = \mathbb{E}_\tau\left[0.5 \int_\tau^t \alpha_s^2 \, ds \Big| \mathcal{F}_\tau \right], \quad 0 \leq \tau \leq t
\]
The original Lorden criterion

\[J(T) = \sup_{\tau} \text{essup} \ E_{\tau}[(T - \tau)^+ | \mathcal{F}_{\tau}] \]

using the Kullback-Leibler Divergence can be modified as

\[J(T) = \sup_{\tau} \text{essup} \ E_{\tau} \left[0.5 \int_{\tau}^{T} \alpha_t^2 \, dt \right] \]

The two criteria are equivalent in the case

\[\alpha_t^2 = \text{constant} \]

i.e. Brownian motion with constant drift.
Similarly

\[\mathbb{E}_\infty \left[\log \left(\frac{d\mathbb{P}_\infty}{d\mathbb{P}_0} (\mathcal{F}_t) \right) \right] \]

\[= \mathbb{E}_\infty \left[- \int_0^t \alpha_s \, dw_s + 0.5 \int_0^t \alpha_s^2 \, ds \right] \]

\[= \mathbb{E}_\infty \left[0.5 \int_0^t \alpha_s^2 \, ds \right] \]

This suggest replacing the constraint \(\mathbb{E}_\infty [T] \geq \gamma \) with

\[\mathbb{E}_\infty \left[0.5 \int_0^T \alpha_t^2 \, dt \right] \geq \gamma \]
Summarizing:

$$J(T) = \sup_\tau \text{essup } \mathbb{E}_\tau \left[\mathbb{1}_{\{T > \tau\}} 0.5 \int_\tau^T \alpha_t^2 \, dt \mid \mathcal{F}_\tau \right]$$

Optimization problem:

$$\inf_T J(T);$$

subject to: $$\mathbb{E}_\infty \left[0.5 \int_0^T \alpha_t^2 \, dt \right] \geq \gamma$$
CUSUM tests for Ito processes

The CUSUM statistics y_t for Ito processes takes the form

$$
du_t = \alpha_t \, d\xi_t - 0.5 \alpha_t^2 \, dt
$$

$$
m_t = \inf_{0 \leq s \leq t} u_s
$$

$$
y_t = u_t - m_t
$$

and the optimum CUSUM test is

$$
T_C = \inf_t \{ t : y_t \geq \nu \}
$$

where ν such that:

$$
E_\infty \left[0.5 \int_0^{T_C} \alpha_t^2 \, dt \right] = \gamma
$$

Since y_t has continuous paths, when the CUSUM test stops we have: $y_{T_C} = \nu$.
Since $u_t \geq m_t$ we conclude $y_t = u_t - m_t \geq 0$

m_t is nonincreasing and $dm_t \neq 0$ only when $u_t = m_t$ or $y_t = u_t - m_t = 0$

If $f(y)$ continuous with $f(0) = 0$, then $f(y_t)dm_t = 0$
If \(f(y) \) is a twice continuously differentiable function with \(f'(0) = 0 \), using standard Ito calculus, we can write

\[
df(y_t) = f'(y_t)(du_t - dm_t) + 0.5\alpha_t^2f''(y_t)dt
\]

\[
= f'(y_t)du_t + 0.5\alpha_t^2f''(y_t)dt
\]

Theorem 1: \(T_C \) is a.s. finite, furthermore

\[
\mathbb{E}_\tau \left[\mathbf{1}_{\{T_C > \tau\}} 0.5 \int_\tau^{T_C} \alpha_t^2 dt \mid \mathcal{F}_\tau \right] = [g(\nu) - g(y_\tau)] \mathbf{1}_{\{T_C > \tau\}}
\]

\[
\mathbb{E}_\infty \left[\mathbf{1}_{\{T_C > \tau\}} 0.5 \int_\tau^{T_C} \alpha_t^2 dt \mid \mathcal{F}_\tau \right] = [h(\nu) - h(y_\tau)] \mathbf{1}_{\{T_C > \tau\}}
\]

\[
g(y) = y + e^{-y} - 1 \quad \quad h(y) = e^y - y - 1
\]
The functions $g(y), h(y)$ are increasing, strictly convex, with $g(0) = h(0) = 0$. We can therefore conclude

$$J(T_C) = \sup_\tau \text{essup} \mathbb{E}_\tau \left[1_{\{T_C > \tau\}} 0.5\int_\tau^{T_C} \alpha_t^2 \, dt \mid \mathcal{F}_\tau \right]$$

$$= \sup_\tau \text{essup}[g(\nu) - g(y_\tau)] 1_{\{T_C > \tau\}}$$

$$= g(\nu) - g(0) = g(\nu) = \nu + e^{-\nu} - 1$$

Similarly

$$\mathbb{E}_\infty \left[0.5 \int_0^{T_C} \alpha_t^2 \, dt \right] = h(\nu) - h(0) = h(\nu) = \gamma$$

$$e^\nu - \nu - 1 = \gamma$$
For any stopping time T, using again standard Itô calculus, we have the following corollary of Theorem 1

Corollary:

$$
\mathbb{E}_\tau \left[\mathbbm{1}_{\{T > \tau\}} 0.5 \int_{\tau}^{T} \alpha_t^2 \, dt \right] = \mathbb{E}_\tau [g(y_T) - g(y_\tau) | \mathcal{F}_\tau] \mathbbm{1}_{\{T > \tau\}}
$$

$$
\mathbb{E}_\infty \left[\mathbbm{1}_{\{T > \tau\}} 0.5 \int_{\tau}^{T} \alpha_t^2 \, dt \right] = \mathbb{E}_\infty [h(y_T) - h(y_\tau) | \mathcal{F}_\tau] \mathbbm{1}_{\{T > \tau\}}
$$

Remark 1: The false alarm constraint can be written as

$$
\mathbb{E}_\infty \left[0.5 \int_{0}^{T} \alpha_t^2 \, dt \right] = \mathbb{E}_\infty [h(y_T) - h(0)] = \mathbb{E}_\infty [h(y_T)] \geq \gamma
$$
Remark 2: The modified performance measure $J(T)$ can be suitably lower bounded as follows

$$J(T) = \sup_\tau \operatorname{essup} E_\tau \left[\mathbf{1}_{\{T > \tau\}} \cdot 0.5 \int_\tau^T \alpha_t^2 \, dt \mid F_\tau \right]$$

$$\geq \frac{E_\infty[e^{y_T}g(y_T)]}{E_\infty[e^{y_T}]}$$

In the case of CUSUM the lower bound coincides with the corresponding performance measure $J(T_C)$.

Remark 3: We can limit ourselves to stopping times that satisfy the false alarm constraint with equality, i.e.

$$E_\infty[h(y_T)] = \gamma = h(\nu)$$
Theorem 2: Any stopping T that satisfies the false alarm constraint with equality has a performance measure $J(T)$ that is no less than $J(T_C) = g(\nu)$.

Proof: Let T satisfy the false alarm constraint with equality, i.e.

$$\mathbb{E}_\infty[h(y_T)] = \gamma = h(\nu)$$

we then like to show that: $J(T) \geq g(\nu)$.

Since $J(T) \geq \frac{\mathbb{E}_\infty[e^{y_T}g(y_T)]}{\mathbb{E}_\infty[e^{y_T}]}$ it is sufficient to show

$$\mathbb{E}_\infty[e^{y_T}\{g(y_T) - g(\nu)\} + h(\nu) - h(y_T)] \geq 0$$
If we define the function

\[p(y) = e^y \{ g(y) - g(\nu) \} + h(\nu) - h(y) \]

then the previous inequality becomes: \(\mathbb{E}_\infty [p(y_T)] \geq 0 \)

We observe that \(p(y) \geq 0 \)

therefore we also have \(\mathbb{E}_\infty [p(y_T)] \geq 0 \)

with equality iff \(y_T = \nu \), i.e. the CUSUM test.
Extensions

Can our result be extended to the discrete time case?

\[\xi_n = \begin{cases}
 w_n & 0 \leq n \leq \tau \\
 \alpha_{n-1} + w_n & \tau < n
\end{cases} \]

\{w_n\} an i.i.d. Gaussian process
\{\alpha_n\} adapted to the history \(\mathcal{F}_n = \sigma\{\xi_k : 0 \leq k \leq n\} \)

Not Straightforward!

\[\mathbb{E} \left[\mathbbm{1}_{\{T > \tau\}} \cdot 0.5 \sum_{k=\tau}^{T} \alpha_k^2 \bigg| \mathcal{F}_\tau \right] \neq \mathbb{E} \left[g(y_T) - g(y_\tau) \bigg| \mathcal{F}_\tau \right] \mathbbm{1}_{\{T > \tau\}} \]

Similar problem exists for SPRT.
Straightforward extension for scalar processes

\[d\xi_t = \begin{cases}
\alpha_t \, dt + \sigma_t \, dw_t & 0 \leq t \leq \tau \\
\beta_t \, dt + \sigma_t \, dw_t & \tau < t
\end{cases} \]

or vector processes

\[d\Xi_t = \begin{cases}
A_t \, dt + \sum_t dW_t & 0 \leq t \leq \tau \\
B_t \, dt + \sum_t dW_t & \tau < t
\end{cases} \]
EnD