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Another interesting area of research is in modeling evolution by trees. We know that when we
seek additive trees to fit distances, the problems that result turn out to be NP-complete most
of the time. On the other hand, ultrametric trees are perhaps unreasonably restrictive since
they are premised on a constant rate of molecular evolution. It would be interesting to find
intermediate models that model (bounded) variations in rates of evolution where the problems
remain tractable. Finally, the question of finding approximately optimal solutions under the L?
and L? norms for additive and for ultrametric trees remains open.
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Proof: Suppose G can be k-colored. We construct a tree 7' as follows. Let » be a root, and let
Zq, 23, ...,z be the children of 7. The children of z; will be the vertices of the i*" color class in
G. We then assign weights for each edge by setting w(v,2;) = 0 for all v which are children of
z;. We set w(z;,r) = 1. This tree satisfies the constraints above.

For the converse, suppose such a tree T exists. If T is minimal it can be shown that the
maximum interleaf distance in the tree is equal to the maximum entry in the matrix M(G). We
can therefore assume that all distances dg; are either 2 or 0. Thus, all the children of the root
r will be at distance 1 from the root, and the children of these nodes will be at distance 0 from
their parents (and hence from each other). Thus, C(T,w) = |{z : z is a child of r}| < k. Let the
children of » be 21, 2,,...,z, for ¢ < k. We define the coloring ¢ : V' — Z by setting c(v) = ¢
where v is a child of z;. To see that this coloring is proper, suppose that ¢(v;) = ¢(v;) for adjacent
vertices v;,v;. Then M(G);; = 2, so that in the tree T, dg; = 2. But then v; and v; are not
children of the same child of r, so they are colored differently. |

We thus have the following theorem.
Theorem 10 Finding the Minimum Ultrametric Tree is NP-complete.

Because of the linearity in our construction and a theorem of Lund and Yannakakis[29], we
can also prove the following:

Theorem 11 There is an € > 0 such that the Minimum Ultrametric Tree Problem can not be
approzimated in polynomial time within ratio n® unless P = N P.

This is, we believe, the first non-approximability result relating to phylogenetic tree construc-
tion to appear in the literature.

9 Summary and Conclusions

Computing phylogenetic trees from distances is a standard problem for biologists, despite the
fact that distance matrices rarely fit trees exactly, and when they do not, finding an optimal tree
(under any of several optimization criteria) is an NP-hard problem. Biologists have therefore
resorted to using clustering methods (heuristics such as the UPGMA method[33]) which do not
promise to produce trees of guaranteed error bounds) or to performing exhaustive search, in their
search for likely candidates for trees.

We examined the methods by which biologists actually determine the interspecies distances,
and discovered that these methods are problematic in that they rely upon criteria which are
in themselves NP-hard, and also widely debated by the scientific community. We therefore
suggested that, rather than restricting our models to exact distances, we would presume that
each interspecies distance is given as an interval in which the tree-distance must lie.

Problems based upon constructing additive trees from these generalized distances were gen-
erally found to be NP-complete, but we were able to find polynomial time algorithms for the
problem of constructing ultrametric trees from generalized distances. Since ultrametric trees are
what one obtains when the distance is given in terms of time and the species are all current day
species, this is a useful tool.

10 Open Problems

One important open question is that of finding a minimum increment to an additive tree under
the L*° norm. At present, we do not know if there is a polynomial time solution to this problem.
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1. For all 4,57 € {1,2,...,m}, dg’.yj = 1 and there is an internal node r in 7 such that
df =1/2.

TYi

2. Foralli e {1,2,...,n} and j € {1,2,...,m}, dg;.yj =4 and dg;.r = 3.5.

The two points above establish that the optimal additive tree on the expanded set of nodes is
obtained by (1) finding the optimal ultrametric tree on the original set of nodes, (2) appending the
internal node 7 to be at distance 3.5 from each of the original nodes, and, finally, (3) appending
each of the y;’s in a separate branch of length 1/2 from ». Thus if we can decide the version of MIA
produced above, we can decide the original instance of MIU, proving that MIU is NP-Complete.

8 Approximating the Minimum Size Ultrametric Tree is hard

We consider a different optimization problem in this section. Here we are given a distance
matrix M, and we presume that M is a lower bound on the true evolutionary distances, so
that the phylogenetic tree T' we construct should have dg; > M;; for all ¢,j7. Within this set
of trees we wish to choose an edge-weighted tree 7' of minimum size, where the size of the tree
T is C(T,w) = Z.ep(ryw(e), where w(e) is the weight of the edge e. This criterion was first
proposed by Beyer et. al. in 1974 in [3] and Waterman et. al. in 1977 in [38], and is one
of the standard criteria used for tree reconstruction. We will show that a special case of this
problem is equivalent to computing Graph Coloring, and thus is difficult in two ways: first, it is
NP-complete, and secondly, unless P=NP, there is an ¢ > 0 so that it cannot be approximated
within a ratio of n°.

8.1 Computing the Minimum Size Ultrametric Tree is NP-hard

The statement of our problem is as follows:

Minimum Size Ultrametric Tree (MUT)
Input: An n-by-n distance matrix M, positive integer k.

Question: Does there exist an edge-weighted tree T such that dsz > M;; for all 4,5 and such
that X.cpmyw(e) < k?

We will show that Graph Colorability reduces to the Minimum Size Tree problem. We now
describe the reduction.

Let (G = (V,E),k) be an instance of graph coloring, with V' = {v1,vs,...,v,}. We will
determine an n-by-n matrix M(G) as follows. If (v;,v;) € E we set M;; = 2, else we set

M(G);; = 0.

We now prove the following lemma.

Lemma 12 G can be k-colored if and only if there erists an edge-weighted ultrametric tree T
such that dsz > M(G);j; for all i,j, and such that C(T,w) < k.
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Suppose the answer to SCP was “yes” and that G’ is a subgraph of G created by removing
at most k edges, such that G’ is the disjoint union of cliques. We will create a matrix M’ as
follows. If (v;,v;) € E(G’') then set M;; = M;; = 1, else we set M/, = 2. We claim that the
resulting matrix is ultrametric. To see this, suppose a,b, and ¢ are three of the vertices and
suppose it is not true that M, , < max(M; ., M, ). Then since all distances are 1 or 2 it must
be that M, = 2 and M; = M, . = 1. But this means that (b,c) and (a, c) are in E(G’), but
that (a,b) ¢ E(G"), contradicting the fact that G’ is a disjoint union of cliques. It should also
be noted that the net increment from M to M’ is within the bound specified. Thus, we have a

“yes” instance of MIU.

Conversely suppose that we created a “yes” instance of MIU. It can be shown that the
ultrametric matrix we get by incrementing the given matrix, M, will still only contain the entries
1 and 2. Under this assumption suppose M’ is the matrix we get after incrementation. Consider
creating G’ from G by deleting the edges in G corresponding to entries that went from 1 in M
to 2 in M'. We claim that G’ is a disjoint union of cliques. To prove this we only need to show
that if (a,b) and (b, c) are edges in G’, then (a,c) is an edge as well. But this follows from the
fact that M'(a,c) < max(M’(a,b), M'(b,c)) and the fact that M'(a,b) = M'(b,c) = 1. These
two facts imply that M’(a,c) = 1 which implies that (a,c) must be an edge in G'. |

7 Minimum Increment to Additive

We now show how we can use the fact that MIU is NP-complete to show that under the L!-norm
a decision version of the minimum increment to additive problem is also NP-hard. Our proof of
this reduction is essentially identical to a reduction given by Day[9]. Day[9] shows that under the
L'-norm, the problem of finding the best-fit ultrametric tree reduces to the problem of finding
the best-fit additive tree. There are two differences between the reduction that [9] presents and
the reduction that we seek. First, [9] is concerned with best-fit, while we are concerned with
min. increment, and second, [9] allows only half-integer weights on the tree edges, while we allow
arbitrary (finite precision) real weights. We define the problem MIA as follows.

L'-Minimum Increment to Additive Problem (MIA)
Input: A non-negative distance matrix M and a real number k.

Questior;: Is there an edge-weighted additive tree 7' such that dg;- > M;; V4,7 and EW(DZ —
M;;) < k?

Theorem 9 The L'-Minimum Increment to Additive Problem is NP-Complete.

Proof: We have shown that the minimum increment problem to ultrametric (MIU) in NP-
complete even in the special case where the entries in the matrix take on only the values 1 and
2. We will make the reduction to MIA from this special case of MIU. Suppose the input to the
special case of MIU is an n X n matrix M and an integer k. Denote the n-element species set
implicit in the MIU problem by i, s, ...,2,. As noted before, in any optimal ultrametric tree
U, din < 2,VY4,j. In the instance of MIA that we create, the specified distances between the
z;’s and the value of k will be unchanged. We introduce m = n* dummy nodes v;,¥s,...¥m
and specify other distances as follows. For ¢ € {1,2,...,n} and j,k € {1,2,...,m} we specify
M(z;,y;) = 4 and M(y;,yx) = 1 Then the theorems in [9] serve to establish the following facts
about the optimal additive tree, 7', whose interleaf distances are an increment to the specified
distances.
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Let n be the number of vertices in G. For every triangle ¢t € G attach a clique K(t) on n?

new vertices to the three vertices in the triangle creating a clique on n? + 3 vertices. To each
clique K (t) on n? new vertices that we added, attach one more new vertex, s(t). Thus each K(t)
connects on one side to a single vertex s(¢) and on the other side to a triangle . This is the
graph H. Let m the number of edges in G and 7 the number of triangles in G. Specify k to
be n3/3 + (T - n/3)3n2 + m — n. We claim that the instance of SCP is a ‘yes’ instance iff the
instance of PiT that we started with was a ‘yes’ instance.

Suppose we started with a ‘yes’ instance of PiT. Then there is a set S of n/3 triangles which
partition the vertices of G. In H we retain the following cliques: For each t € S we retain the
clique on n? + 3 nodes formed by the vertices of tU K(t). For each t ¢ S we retain the n? + 1-sized
clique formed by the vertices of K (¢) U s(t). We remove any edges that are not part of these
cliques. We count the number of edges removed as follows: For each ¢t € S we need to remove
the n? edges that connect K (¢) to s(t). Since |S| = n/3 this amounts to a total of n3/3 edges.
For each t ¢ S we remove the 3n? edges connecting ¢ with K(¢). This amounts to a total of
(T —n/3)3n? edges. Finally, n of the edges in G are covered by the triangles used in S and hence
by the clique cover we have defined above. We need to remove the remaining m — n edges. The
total number of edges removed is exactly equal to the bound k¥ we have above and hence we have
a ‘yes’ instance of SCP.

Conversely suppose we have a ‘yes’ instance of SCP. Let ¢t be any triangle in G. Let us focus
on the edges between K (t) and the rest of the graph. Each vertex in K (¢) has three edges to ¢
and an edge to s(t). Of these four edges, one, two, or three edges will be covered by cliques in an
optimal partition into cliques. If three edges are chosen then the optimal partition must include
the clique on t U K(t). Let r be the the number of these K (t) cliques covered by (n? + 3)-sized
cliques chosen in the partition, and [ be the number of these cliques covered by (n? + 2)-sized
cliques in H obtained by choosing two of the vertices in G out of the triangle to which each of
these cliques is attached.

Note that 37 + 2] < n and that the total number of edges between the vertices of cliques K(t)
and the rest of H that is not covered by cliques in the clique partition is at least (r + 2 + 3(7 —
r —[))n?. Call such edges cross-edges. We will show that the number of these cross-edges which
are not covered by an optimal clique partition exceeds our bound if G does not have a partition
into triangles. Assume that G does not have a partition into triangles. Then since r < n/3, the
minimum number of these cross-edges that are left uncovered is (n/3 —1)n?+2n% + 3(T —n/3)n.
This corresponds to the choice of » = n/3 — 1 and [ = 1. This is already greater than the bound
on the number of edges that can be removed since n? > m — n. Thus we could not have had a
‘yes’ instance of SCP. This establishes the validity of the reduction. |

6.2 Minimum Increment to Ultrametric Problem is NP-complete

We know from the previous section that the Subgraph Clique Partition Problem ( SCP) is NP-
complete. We will prove the Minimum Increment to Ultrametric Problem ( MIU) is NP-complete

by reducing SCP to MIU.

Theorem 8 The Minimum Increment to Ultrametric Problem is NP-complete.

Proof: Given an instance (G, k) of SCP, we create a distance matrix as follows: If (v;, v;) € E(G)
we set M;; = 1, else we set M;; = 2. We then ask if the matrix M can be incremented to an

ultrametric matrix M’ by incrementing the entries by no more than a total of k. We claim that
the answer to this question is “yes” iff the answer to the instance of SCP was “yes”.
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Figure 4: Transformation of PiT to SCP

In other words we are asking if k or fewer edges can be removed from G such that all the
connected components of the resulting graph are cliques.

To show that SCP is NP-complete, we will reduce the Partition Into Triangles (PiT) problem
to SCP. The PiT problem is as follows:

Partition into Triangles (PiT) Problem
Input: Graph G = (V, E) with |V| = 3¢ for some integer g.

Question: Can the vertices of G be partitioned into g disjoint sets Vi, V53,...,V, so that each V;
induces a triangle?

The PiT Problem is listed as NP-Complete in [17]. We can now prove that SCP is NP-
complete.

Theorem 7 The Subgraph Clique Partition Problem is NP-complete.

Proof:
We show that PiT reduces to SCP.

Let G be an instance of PiT. We construct the following graph H as an instance of SCP.
We also need to specify the integer k as part of the input to SCP. Figure 4 illustrates the
transformation.
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from i, to u and similarly let m, be the vertex where the path from i3 to v first intersects the
path from 74 to v. Let 4q,14s,%3,74 be placed in the same positions at which they occur in 7.
Choose the position of the other dummy nodes in order to produce the correct distances between
i1Mmy, t9My, i3Ma, 14y and mymsy. This shows that there is a tree that satisfies the distance
conditions specified. Conversely, note that by property (1) of the flexible-distance gadget, any
tree that is consistent with the specified distances is also consistent with all quartets. |

5.2 Matrix Sandwich to Additive Problem

Since the Matrix Completion to Additive is NP-complete the Matrix Sandwich to Additive is also
trivially NP-complete.

Lemma 11 The Matriz Sandwich to Additive is NP-complete.

Proof: We will reduce MCA to MSA. Let M be the input to MCA, and let E be the set of pairs
(2,7) such that M[s, 7] is set. For each (4,7) € E, set My[i,j] = M;[s,7] = M]3, j], and for each
(2,7) € E, let M[i,7] = 0 and Mp[s, j] = oo. It is clear that any solution to the MSA problem
yields a solution to the MCA problem, and vice-versa. We showed in the previous section that
MCA is NP-complete, so that MSA is also NP-complete. |

6 Hardness of min increment to ultrametric under L-norm

In this section we show that the problem of minimally incrementing a distance matrix under the
L'-norm so as to make it an ultrametric matrix is NP-hard. We define an equivalent decision
problem, which we call the Minimum Increment to Ultrametric Problem, or MIU.

L'-Minimum Increment to Ultrametric Problem (MIU)
Input: A non-negative distance matrix M and a real number k.

Question: Is there an edge-weighted tree T' such that dg;- > M;; Vi, 7 and E”(DZ; — M;;) < k?

The NP-completeness proof involves proving an intermediate problem, the Subgraph Cligue
Partition Problem, to be NP-complete. We will define the Subgraph Clique Partition (SCP)
Problem, and prove SCP NP-complete by areduction from the NP-complete problem, Partitioning
into Triangles (or PiT). We will then show that SCP reduces to MIU, so that MIU is NP-complete.

6.1 The Subgraph Clique Partition Problem is NP-complete

We begin by defining the Subgraph Clique Partition Problem.

Subgraph Clique Partition Problem (SCP)
Input : Graph G = (V, E), integer k.

Question: Does there exist a set Eg C E of k or fewer edges so that in the graph G’ = (V, E' =
E — Ey) if (u,v) € E' and (v,w) € E’ then (u,w) € E'.
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Figure 3: Transformation of a quartet into a set of flexible-distance gadgets

Proof: It is easy to check that the MCA Problem is in NP. We now show that it is also
NP-hard. We will describe how to encode quartets by flexible distance gadgets which impose
the correct topology constraints without really imposing serious distance constraints on the
tree. Let {(¢1,%2),(43,%4)} be a quartet. We construct the following flexible distance gadgets:
Fg(mq,b1,41,21), fg(ma,bs, iz, 22), fg(ma,bs,is,z3) and fg(ma,bs,is,24) and also the flexible
distance gadget fg(mi,p, m2,q). Figure 3 illustrates the gadgets used in the transformation of
the quartet {(i1,72)(%3,%4)}-

In addition to the distances specified by the definition of the flexible distance gadgets we
specify the following distances: d(z1,22) = 2n + 2 to enforce that z; and z, are on opposite
sides of m; and similarly d(z3,24) = 2n + 2 to ensure that 3 and 24 are on opposite sides of
my. We set d(z1,p) = d(z2,p) = d(z3,p) = d(24,p) = 2n + 1 to enforce the correct conditions of
betweenness.

For every quartet we create the collection of gadgets and other distance specifications as above
using a completely new set of dummy nodes. We can then argue that there is a tree consistent
with the distance constraints iff there was a tree consistent with the quartets that were input to

QCP. This will prove that MCA is NP-hard.

Suppose there is a tree T that is consistent with the quartets. By Lemma 10, we can assume
that no interleaf distance in 7' is more than n — 1 times any other. If {(%1,72)(43,%4)} is a quartet
that is part of the input to QCP, then since T is consistent with all such quartets, there must
exist an edge e = (u,v) € T whose removal separates (i1,%s) from (i3,74). To produce a tree
that is consistent with the distance constraints imposed by the transformation of the quartet
{(%1,72)(%3,%4)}, let my be the vertex where the path in T from %; to u first intersects the path
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Figure 2: The two extreme arrangements of a flexible-distance gadget

are part of the input to QCP which we call the original nodes. We will never specify the distance
between any pair of original nodes. Instead we will impose the topology constraints of QCP
by specifying distances between original nodes and dummy nodes and between pairs of dummy
nodes. Qur constraints do have the side-effect of implicitly forcing distances between pairs of
original nodes to lie within a certain range. We then appeal to Lemma 10 and argue that the
range is big enough to allow for the realization of a tree consistent with all the quartets if one
exists. All this is accomplished using the primitive of a flexible-distance gadget which is described
below.

Flexible-distance gadget Suppose s, ¢, u, v are four nodes and the following distances are spec-
ified between them: d(s,t) = n, d(¢,u) = n, d(u,v) = n, d(s,v) = n+1 where n is some positive
integer to be specified later. These are the specifications of a flexible-distance gadget on s,t,u,
and v and we will prove the following two properties about the gadget.

1. The gadget imposes the topology constraint corresponding to the quartet {(s,?), (u,v)}.

2. The (unspecified) distance between s and u can attain any value between 1 and 2n.

The first point is a simple consequence of the four-point condition stated in Section 2. Note
that d(s,v) + d(t,u) = 2n + 1 > 2n = d(s,t) + d(u,v). Thus, the only way that these distances
can satisfy the four-point condition is if d(s, u) + d(t,v) = 2n+ 1, so that the topology constraint,
{(s,t), (u,v)}, is met.

We now prove the second point. By the topology constraint, in any tree realization of the
specified distances, when following the path from s to v we will first encounter the branch
containing ¢ and subsequently the branch containing u (Figure 2). Let « be the point along the s
to v path at which the branch containing ¢ is attached and let d(s,z) = k. Then d(z,t)=n—k
and d(z,u) = n — (n — k) = k. If y is the point at which the branch containing u attaches to
the path from s to v, then y must be equidistant from ¢ and v since u is equidistant from ¢ and
v. We have, d(t,v) = d(s,v) — d(s,z) + d(z,t) = 2n + 1 — 2k and hence d(t,y) = n+ 1/2 — k.
In other words, d(z,y) = 1/2. It can be seen that k can take on any value between 1/2 and n
while keeping all distances non-negative and that d(s,u) = 2k ranges between 1 and 2n. We will
denote this construction by fg(s,t,u,v); in this construction, the distance between the first and
the third argument is flexible and can vary between 1 and 2n. (Figure 2 shows how the gadget
realizes the two extreme values of d(s,u).)

Theorem 6 The Matriz Completion to Additive Problem is NP-complete.
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5 Results for Additive Trees

By contrast with our results about ultrametric trees, we will show that the Matrix Completion
Problem is NP-complete for general trees, so that the Matrix Sandwich Problem is also NP-
complete. We begin with the Matrix Completion Problem.

5.1 The Matrix Completion to Additive Problem is NP-complete

Recall the Matrix Completion to Additive Problem.

Matrix Completion to Additive Problem (MCA)

Input: Matrix M for which only some of the entries are known. An unset matrix entry is
indicated by M|z, j] = “*”.

Question: Does there exist an additive matrix M’ satisfying M[i,j] = M’'[¢,j] whenever

M[i,j] # “*?

We will prove that the MCA problem is NP-hard by reducing Quartet Consistency to MCA.
The Problem of Quartet Consistency is as follows:

Quartet Consistency Problem (QCP)
Input: A set S of pairs of pairs, of the form {(z, j), (k,1)}.

Output: A leaf labeled tree T (if one exists) such that for each element {(¢,7), (k,!)} in the set
S, there is an edge e € T such that T'— {e} has ¢,j in one subtree and k,! in the other
subtree.

Pairs of pairs of the form {(z, ), (k,l)} are called quartets and they impose a constraint on
the topology of the tree by requiring ¢ and j to be on ‘one side’ and k and [ to be on the other.
The Quartet Consistency Problem was shown to be NP-complete in [34], and is equivalent to
the Perfect Phylogeny Problem, which was independently shown to be NP-complete in [4]. Both
formulations are explicitly concerned with constructing phylogenetic trees from character sets.

We state the following easy lemma for use in our reduction.

Lemma 10 If there is a tree, T, that is consistent with a given set of quartets on n species, then
there is an edge-weighted tree, T', which is also consistent and where the largest interleaf distance
is at most n — 1 times the smallest interleaf distance.

Proof: We can assume without loss of generality that no internal vertex in the tree has degree
two. Now, assign weights of one to all the edges of 7', and the proposition follows. |

The Reduction

QCP imposes constraints on the topology of the tree without imposing any constraints on
the distances between nodes. On the other hand an instance of MCA explicitly specifies some of
the distances between nodes. Thus in reducing QCP to MCA we need to have a way of imposing
topology constraints among quartets without constraining the distances between the four nodes
in the quartet. In order to do this we will introduce dummy nodes in addition to the nodes that

13



also be used to build U. The only modification required is to assign weights to the edges of U.
We prescribe these edge-weights in U implicitly by defining the height of each subtree that we
build. We let H(r) denote the height of the subtree rooted at ». We now spell out the algorithm
for building U. We set H(l) = 0, for each leaf I. We sort the edges of T in increasing order of
cut-weights. We maintain a union-find data structure. When processing the edge (u,v) € T', we
find the subtrees containing v and v and make the roots of these subtrees children of a new root
r. We set H(r) = CW(u,v)/2, to ensure that nodes whose least common ancestor is r are at
a distance of CW(u,v) from each other. Since we process the edges of T' in increasing order of
cut-weights, the height function is monotone non-decreasing and hence no edge of U gets assigned
a negative weight. I

Corollary 9 The matriz completion to ultrametric problem can be solved in time O(nlogn+ e).

4.5 Optimizing under a generalized L*-norm

In this subsection we consider a generalization of the Min. increment and Best-fit problems for
ultrametric trees under the L°>°-norm and present an O(e + nlogn) algorithm for this problem.
We define the following problem which generalizes both the min. increment and the best-fit
problems for ultrametric trees under the L°°-norm.

Ultrametric L™ optimization

Input: A graph G = (V, E) along with a weight function M on the edges and two functions
f(z,€) and g(z,€) which take two real arguments such that both f and g are monotone
non-decreasing on their first argument, f is monotone non-increasing on € and g is monotone
non-decreasing on e.

Output: The smallest value of € such that there exists an ultrametric tree U in which for all

(2,7) for which Mz, j] is defined, f(M][z,7],€) < din < g(M[z, 7], €).

This problem includes as special cases, both the min increment and the best-fit problems
under the L> metric. To see this, note that setting f(M][s,j],€) = M|, j] — € and g(M][s, 7], €) =
MT3, j] + € defines the best-fit problem, while changing the definition of f to f(M[¢,j],¢) = M|z, j]
defines the min. increment problem under the L*° norm. We now show an O(e+nlogn) algorithm
for it derived from a simple modification to our sandwich algorithm.

Theorem 5 There is an O(e + nlogn) algorithm for the Ultrametric L™ optimization problem.

Proof: Construct the minimum spanning tree 7' using the weights given by the weight-function
M. Compute cut-weights using again the same weight-function M. At this point choose the
minimum € to ensure separability. To do this, we need to make sure that for all edges e on the
spanning tree with weight M [e], the cut-weight CW(e) < M[e]. By the monotonicity of f and ¢
it is enough to ensure that € is chosen big enough in order to satisfy f(CW(e),e) < g(M]e],¢).
Thus each edge of the spanning tree imposes a lower bound on € and we just take the maximum
of these €’s (in linear time) as the optimal choice of e. We can then compute the best tree by
evaluating f and g explicitly for each of the edge-weights, solving for ¢, and solving a sandwich
problem. |

The above theorem can be generalized to optimize for a fixed number of parameters such as
¢, but the optimization under the L! norm where we want to minimize the sum of (up to) n?
different increments turns out to be NP-hard.
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e Sort the edges of the MST in decreasing order of their cut-weights as e1,...,e,_1.

e Build the ultrametric tree as follows: Let the root node of the tree have two children. Build the
left and right subtrees by recursing on the two components created by the removal of e;. Let
T and T be the recursively constructed subtrees. Attach the root to subtree T3, 7 = 1,2 with
an edge of weight CW(e1)/2 — H(T;) and set H(T) = CW(e1)/2 for the resulting tree T

The correctness of the algorithm above follows from Theorem 3 and by noting that the weights
assigned to edges in the ultrametric tree constructed, realize the inter-leaf distances specified by
the theorem. Before undertaking an analysis of the running time, we need to look more carefully
at the data structures involved.

4.4 Implementation Details and Running Time Analysis

Theorem 4 The ultrametric graph sandwich problem can be solved in O(e 4+ nlogn) time.

Proof: It is known that the MST of any graph can be computed in time O(e + nlogn) (see
e.g. [7]). Computing cut-weights for the edges of the MST can also be done in O(e + nlogn) as
follows.

Let a Cartesian Tree of a weighted tree T be a tree T such that the root r of T is the largest
weight edge, €442, in T, and the two children of r in T are the recursively defined cartesian
trees of the subtrees induced in 7' by removing €,,,,. The leaves of T are the nodes of T'.

If we can build a cartesian tree T of the MST T using the weights defined by the weight
function M}, then we can find the cut weights as follows. We preprocess T¢ for least common
ancestor (1ca) queries. This can be done in linear time so that given any pair of nodes of T¢,
we can find their 1ca in constant time [19]. Now for each edge (u,v) € Ej, let I,,, [, be the leaves
in T¢ representing nodes « and v. In O(1) time we can find the largest weight edge in Pr(u,v)
by finding 1ca(ly,l,) in T¢. So in time O(e) we can find the link-edge for every pair (z,y) € Ej.
Cut-weights for every edge in T can also be computed in the same time bounds. In the above
algorithm for computing link-edges, we simply add the following computation: For each edge
e € T we initialize its cut-weight to 0 at the beginning of the algorithm, and whenever e gets
assigned as the link-edge for a pair (u,v), we update the cut-weight of e to M;[u,v] if M;[u,v]
exceeds the current cut-weight of e.

To complete the construction, we show how to build a cartesian tree in time O(nlogn).
We examine the edges of tree T in increasing order of weights. We maintain a union-find data
structure on the leaves of the tree we are building. Suppose inductively that we have computed
the cartesian tree for all the sets in our union-find data structure. When examining edge (u,v)
in T, we first find the sets, S, and S, containing u and v respectively in the union-find data
structure. Let T¢(u) and T¢(v) be the cartesian trees constructed for these sets. We join the
roots of T¢(u) and T¢(v) to a new root. We then union S, and S,,.

Sorting the edges of the T takes time O(nlogn) and building the cartesian tree bottom up
takes time O(na(n,n)). The total time is then O(e + nlogn) for finding all cut-weights.

The output ultrametric tree U is also a cartesian tree except that the weights used in the
definition of this cartesian tree are the cut-weights. This follows from the fact that if e; € T is
the edge with the largest cut-weight, then the pairs of nodes (u,v) for which d, = CW/(ey) are
precisely those pairs for which u lies in one subtree formed by the removal of e; from 7', and v
lies in the other. These are precisely the set of pairs for which the least common ancestor in U
is the root. This implies that the algorithm we described above for building a cartesian tree can
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A link edge, LIN K (a,b), is an edge in Pr(a,b) with weight M,(LIN K(a,b)) = D(T,a,b).

(cf. sensitivity analysis ¢ la Tarjan [36]).
For each edge e in T,

cut-weight CW (e) = max{M;(z,y)|LINK(z,y) = e}.

Theorem 3 There ezists an ultrametric tree U € [ My, My) iff each pair of vertices is separable.

Proof: Suppose there is a pair (2,y) that is not separable. This means that Mj[z,y] >
Mp[LIN K(2,y)]. If e is an edge in the path Pr(z,y), then Myle] < My[LIN K(z,y)]. Thus in
the cycle created by Pr(z,y) and the edge (z,y), any assignment of distances to the edges of
the cycle that respects the sandwich constraints will force the edge (z,y) to be the unique one
of maximal weight. This is inconsistent with an ultrametric metric.

Conversely suppose that every pair is separable. Sort the edges in the spanning tree in
decreasing order of their cut-weights. Let the edges of the MST be e;,...e,_1 in this order.
Consider removing the e; from the tree successively in this order. For every pair (a,b) which is
separated for the first time by the removal of ¢;, set the distance, dgb, between a and b equal to
the cut-weight of e;. In other words, dgb is set equal to CW (e;) iff e; is the first edge in Pr(a,bd)
which is removed. We claim that the resulting set of distances are ultrametric and that they
satisfy the constraints imposed by M; and M.

Once again we use the characterization that a set of distances is ultrametric iff in every cycle
the maximum distance is attained by more than one edge. Consider the edge-weighted graph
that corresponds to the set of distances defined above. Let 4 be a cycle and let e = (u,v) be a
maximum weight edge in 7. Clearly the weight of e was set equal to the cut-weight of the link
edge whose removal separated u and v for the first time. Note also that since e is of maximal
weight in C, no other edge of 4 could have had its endpoints separated before e. However since
every cycle intersects every cut an even number of times, there must be another edge ¢’ = (u/, v')
in 7 whose end-points where also separated for the first time by the removal of that link edge
and hence d7, = dY,

We now have to check that the distances we set are within the constraints imposed by the
upper and lower bounds. Let (u,v) be an arbitrary pair of nodes and e be the edge whose
removal separated (u,v) for the first time. We know that the cut-weight of LIN K (u,v) is at
least Mj[u,v]. Either e = LIN K (u,v) or e has cut-weight greater than or equal to LIN K(u,v)
since e was the first edge removed on Pr(u,v). In either case, it follows that CW(e) > M;[u,v].

To check the upper bound, from the definition of cut-weights, it follows that there is a pair of
nodes (p, ¢) such that LIN K(p,q) = e and M;[p,q] = CW(e). Applying separability to the pair
(p, q), it follows that CW(e) = M;i[p,q] < Mp(e). Furthermore, since T is a minimum spanning
tree, we must have Mp(e) < Mp[u,v] since otherwise, e would have been replaced by (u,v) in
T. Putting these two inequalities together we get CW(e) < Mpy[u,v], proving that the distance
assigned to (u,v) is within the bounds specified. |

The above theorem suggests the following algorithm. In the algorithm, H (T') will refer to the
distance from the root to the leaves of an ultrametric tree 7'.

Algorithm B Sandwich to Ultrametric - MST

e Build an MST of G}, and compute cut-weights for all edges in the MST.
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Theorem 2 Algorithm A is correct and runs in time O(en).

Proof: The correctness follows from Lemma 6 and Corollary 5. The running time follows from
the fact that finding the maximum distance, finding the connected components and splitting
them can all be accomplished in O(e). The algorithm can recurse for up to n levels since at each
stage, the size of the maximal component is reduced by at least one. The total time is therefore

O(en). 1

4.3 An O(e+ nlogn) Algorithm for Sandwich to Ultrametric

In the brute force algorithm, we create a graph G, = (V, Eqp, W) in which (z,y) is an edge
if Mp[z,y] < Mi[a,b]. We take O(e) time to create such a graph and we are interested in the
connected components containing a and b. We now show how to obtain this information for all
pairs (a, b) using a single minimum spanning tree computation!

We begin by proving some general properties of graphs. Throughout this section, when we
refer to a path, we will mean a simple path. Let G = (V, E,W) be any weighted graph. For any
pair 2,y € E, let P = [2=vy,...,v;,=y| be a path from 2 to y. We define the cost ¢(P) of path P
to be the weight of the maximum weight edge in P, i.e. ¢(P) = max{W(v;, v;41)|1 <7< k —1}.
Let Pg(z,y) be the set of paths from z to y. We define D(G, z,y) = min{c(P)|P € Pc(z,y)}.

For the pair Gi,Gp, let G, = (V,E,,), with E;, = {(a,b)|Myla,d] < Mz,y]}. The

following lemma establishes a structural property of the graphs G ,,.
Lemma 7 The nodes  and y are in the same component of G, iff Mi[z,y] > D(Gh,z,y).

Proof:
If Mi[2,y] > D(Gh,,y), then there is a path P from z to y in G}, such that for each edge
e € P, Mp(e) < D(Gp,z,y) < Mfz,y]. P will be a path in G, as well. Conversely if z and

y are in the same component of G, ,, then there is a path between them in G,,. From the
definitions of G, and D(Gp, z,y), it follows that D(Gp,z,y) < M;[z,y]. |

Now let T' be any minimum spanning tree of Gj,. We let Pr(z,y) be the path from z to y
in T. (Since we are only dealing with simple paths, Pr(z,y) is unique.) We define the distance
function D(T, z,y) = ¢(Pr(z,y)).

Lemma 8 Va,b €V, D(T,a,b) = D(Gh,a,b).

Proof: Since a path in T is a path in G, clearly D(Gp,a,b) < D(T,a,b). Now suppose
D(Gh,a,b) < D(T, a,b). Then there exists a path P in G}, from a to b such that ¢(P) < D(T,a,b).
Let (¢, d) be a maximal weight edge in Pr(a,b). Removing (¢, d) from T’ disconnects a from b.
Let (e, f) be the first edge in P whose addition to T' — (¢,d) would reconnect the tree. Now
W(e, f) < W(c,d) so T U (e, f) — (¢,d) is a tree with total weight less than T', violating the
minimality of . So D(G,a,b) = D(T,a,b). 1

We have some more definitions to make.
If Mj[z,y] < D(Gh,2,y), we say that z and y are separable.

Thus, z and y are separable iff Mj[z,y] < D(T,z,y).



If U € [M;, My)] is such that MAX[U'] = M AX[M;], then we call U’ tight. The following

corollary is immediate and its proof is omitted.

Corollary 5 For any tight ultrametric tree U € [M;, My], if Mi[z,y] = MAX[M;], then dgy =
MAX[ D).

Let » be the root of the ultrametric tree U, and a a leaf in U. Define
L(U,a) = {leaves s : 1ca(a,s) < r}

For any two vertices a and b define the graph G, as follows:

Gap = (V,Eqp), where V ={1,...,n}
Ea,b = {(may)“- S z,y S n and Mh[ib,y] < Ml[a’7 b]}

Let C(Ggp, a) be the connected component of G, containing a and let C,, (G4, a) be the vertex
set of that component.

Lemma 6 Let M;[a,b] be mazimal. If there exists a tight U € [M;, M}], then there exists a tight
U' € [My, M) such that L(U',a) = Cy(Gap,a).

Proof: We first show that VU € [M;, M}], Cy(Gap,a) C L(U,a). Suppose that there exists
a vertex z € Cy(Gqp,a) — L(U,a). There must be a path, a = vp,vq,...,v, = z, from a to
z in Gup. Let v;,i > 0 be the first vertex on the path that is not in £(U,a). There must
exist such a vertex since, by assumption, vy = ¢ ¢ £(U, a). Since (v;_1,v;) is an edge in G(a,b),
Mp[vi—1,v;] < Mi[a,b]. On the other hand, 1ca(v;_1,v;) = r (the root), so that dg.'_lv; = Mi|a,b].
But then dg;_lv.' > Mp[v;_1,v;], a contradiction.

Now suppose that there exists a tight U € [M;, M}] such that for some non-empty set S
such that S N Cy(Gap,a) = 0, Cy(Gap,a) US = L(U,a). For any set of leaves V, let Ty (V)
be the minimal subtree induced by the leaves in V. We construct U’ from U by replacing
Tu(Cy(Gap,a)U S) with the tree formed by making T (Cy(Gap, a)) and Ty7(S) each a child of a
root.

Let 2 and y be any leaves in U'. If 2,y ¢ L(U, a), then M;[z,y] < dg; = dgy < Mylz,y]. If
z ¢ L(U,a)and y € L(U,a), then dg; = dgy =MAX[U]. f z,y € S or 2,y € C,(Gap, a), then once
again dg; = dY,. Finally,ifz € Sand y € C,(Gap,a), we have dwU; = MAX[U'] = MAX[U] = MAX[MM;].
But My[z,y] > MAX[M;] since z € C,(Gap,a), so Mi[z,y] < dg,;/ < My[z,y] and U’ € [M;, My).
|

The lemma above implies the following algorithm:
Algorithm A Sandwich to Ultrametric - Greedy

e Find (a,b) that maximizes M;]a, b].
o Construct G, p.
e Make each connected component of G a child of the root of U.

e Recurse on each connected component.
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Figure 1: Ultrametric tree satisfying distance constraints imposed by the reduction

lower bound on sorting holds even in this special case.) We create an instance of the Sandwich
to Ultrametric problem as follows. Let G = (V, E,W) where V = {v} U {v1,...,v,}, E =
{(v,v;)|1 <7< n}, and W(v,v;) = @;. Set G; = G, = G. Now there is always an edge weighted
ultrametric binary tree, U such that d(vavi) = z; for all . Suppose p is the permutation of [1..n]
such that ,q) > @,9) > @pi3) + > Tpn)- Then the ultrametric tree of minimum height is
obtained by creating a root r and letting the distance from r to v equal z,;)/2, and hanging off
vertices v; at distance #;/2 from v along the path from v to r. In fact, it is easy to see that in
any ultrametric tree satisfying the constraints, whenever 7 < j, 1ca(v, Vp(s) > lca(v, Vp(;)- Figure
1 illustrates this. Thus, a linear time traversal of the tree will give us the sorted order of the
z;’s. Since the entire reduction is linear time, the Q(nlogn) lower bound on sorting implies a
similar lower bound on the Graph Sandwich to Ultrametric Problem. The ©(e) lower bound on

the problem follows from the observation that we need to look at every edge in the input. |

4.2 An O(en) algorithm

We first describe a simple O(en) algorithm to motivate the optimal algorithm. Before presenting
the algorithm, we introduce some lemmas.

Lemma 4 If 3U € [M;, M4, then U’ € [M;, Mp] such that MAX[U'] = MAX[M;].

Proof: Suppose otherwise that no such U’ exists and let U” € [M;, M}] be a tree that minimizes
s = MAX[U"] — MAX[M;] > 0. From amongst the edges incident on the root of U”, let the minimal
edge weight be w. Let U be the tree derived from U” be shortening all edges incident on the root
by min{w, s/2}. We will show that U € [M;, M},] thus violating the minimality of U".

1"

Let a and b be any leaves in U”. Then M;[a,b] < dgb < Myla,b]. In producing U, we shorten
some edges 1tzut do not lengthen any edges so we know that daﬁb < Mpyla, b]. Now we must show that
M;i[a,b] < dY,. We have two cases. If 1ca(a, b) is below the root in U”, then dgb” = daﬁb. Otherwise,
d" = MAX[U"] = MAX[M;] + s. But dJ, = dY, — 2min{w, s/2} = MAX[M;] + s — 2min{w,s/2} >
MAX[M[] > Ml[a, b] |



between them appear to be merely cosmetic. However, this is not the case when the goal is
an ultrametric tree. For example, implicit in [27] is an O(n®) algorithm for finding the min.
decrement to an ultrametric tree under the L'-norm. In contrast, we show in this paper that the
min. increment to an ultrametric under the L!'-norm is NP-hard. The best-fit version was also
shown NP-hard by Day in [9], as noted earlier.

Let n = |Vi| = |V4|, and e = |Ep U Ej|. Note that when each pair of distances d(z,j) is
bounded from above and below, e = O(n?). We summarize our results along with the section
numbers in which they occur in the table below:

Desired Graph Min increment | Min increment | Min Tree Size
tree sandwich L' —norm L*-norm
Ultrametric | ©(e + nlogn) NPC O(e + nlogn) | Not-Approx
§4 §6 § 4.5 §8
Additive NPC NPC
§ 5.1 § 7

4 Results for Ultrametric Trees

In this section we show that the graph sandwich to ultrametric problem can be solved in O(e +
nlogn) time, and the problem also has a matching lower bound.

Recall the definition of the Sandwich to Ultrametric problem.

Given: Graphs, Gy and G; with respective weight functions, M} and M;.

Output: An ultrametric tree U (if one exists) such that for all (¢,7) € Ei, M;[¢,7] < din and for
all (3, 7) € Ep, dj; < My[s, j].

Whenever such a tree U exists between G; and Gj, we will say that U € [M;, Mp]. Although
these weight functions are partial, it will be convenient in the description below to extend them
to total functions as follows: Whenever (2, j) € Ej, set M;i[i,j] = 0 and whenever (z,7) ¢ Ep, set
My[i,7] = oo. This extension is for ease of description and these additional values will not be
looked at by any of our algorithms.

We make some definitions which will be useful in the ensuing lemmas. Given a weight function
M, we will let MAX[M] = max{M[i,j|}7;_; Also, we define MAX[U] = max{din 7j=1 for tree U.
There is a natural way of rooting ultrametric trees, so that the root is equidistant from every leaf.
We can then define the least common ancestor of every pair of nodes, z,y. This will be denoted
by lca(x,y). Note that this rooting also defines a partial order on the nodes in the tree. We

will say that v < w for nodes v, w in the tree if the path from v to the root r passes through w.

4.1 Lower Bounds

Theorem 1 The Sandwich to Ultrametric requires Q(nlogn + ) time.

Proof: We prove the lower bound by reduction from sorting. Suppose we wish to sort the
numbers 21, ..., 2,. (To simplify the exposition we will assume that the ;’s are distinct since the



Output: An edge-weighted tree T so that if M|z, 5] # “*”, then dg;- = M]i, 7], if such a tree
exists.

We also consider optimization problems where the goal is to arrive at an edge-weighted tree
whose interleaf distances most ‘closely fit’ a given matrix of distances. We consider both the
L' and L™ norms to evaluate closeness of fit. We denote these problems as L —best fit and
L' —best fit. We consider a variation of the closest fit problems where we are only allowed to
increment the entries in the matrix. Since observed distances are frequently lower bounds on
the tree-distance, this assumption has practical relevance. For example, this is the case when
the distances are derived from alignments of biomolecular sequences for the species. In fact, one
of the original and most popular heuristics for constructing trees from distance matrices, the
Distance Wagner Method[12] proposed by Farris in 1972, restricts attention to trees 7' with this
property. Again under the two norms discussed, we term these problems, L* —min increment
and L'—min increment. Each of the problems described above has a variation where the tree
sought is not just additive, but also ultrametric. A formal description of all of these problems is
given below.

Optimization Problems .
Given: An edge weighted graph with weight function M.

Output: An edge-weighted tree 7' which is optimal under one of the following criteria:
L*>~-best fit: T minimizes qu|dg;- — MJs, 7|
17-7
L°°-min increment: T such that dg;- > M|, j] Vi, j and max(dg;- — M[i, j]) is minimized.
17‘7

L'-best fit: T minimizes Z]d;g. — M[i,7]|
17]
L'-min increment: T such that dg; > M|, j] Vi, 7 and Z(d}; — M[i,7]) is minimized.
1717

As usual, we distinguish between the case that the desired tree is ultrametric and the case
that it is additive by adding the suffix ‘to ultrametric’ or ‘to additive’ respectively to the names
of each of these problems.

We also consider the problem of incrementing the matrix entries in order to minimize the
total size of the resulting ultrametric tree. Here the size of the tree is the sum of the weights of
the edges in the tree. We term this problem the Min. Tree Size problem.

Several of these optimization problems have been considered in a different context by
Kiivanek[27]. More specifically [27] is concerned only with ultrametric trees and considers the
optimization problems of best-fit, min increment, and min decrement under the L° norm and
gives an O(n®) algorithm for each of these three problems. In addition [27] considers the problem
of minimizing the number of entries to be changed in the input matrix in order for the distances
to fit an ultrametric tree when the ultrametric is unrestricted, required to be an increment, and
required to be a decrement respectively and shows that the first two of these problems are NP-
complete. Although, some of the structural theorems that we prove in this paper are similar to
those in [27], we derive significantly more efficient algorithms from these theorems.

Some additional remarks are in order regarding the distinctions between the three problems
of best-fit, min increment, and min decrement to an ultrametric. At first glance, the differences



Efficient algorithms for constructing trees from ultrametric distance matrices were found by
[25] and others.

Unfortunately, interspecies distances are rarely even additive, so that rather than seeking a
tree which exactly fits the distance matrix M, biologists seek to find an edge-weighted tree T'
which minimizes the following cost:

O(T, M) = > wyldE — M[i, ]|
.7.7.

Here, w;; are weights and and a > 0. Various proposals for the w;; were given by several
authors [16, 3, 38]. Setting w;; = 1 was suggested by Cavalli-Sforza and Edwards in [6], but in
[9], Day showed that when w;; = 1, finding optimal trees for the above criterion is NP-hard, for
a =1 or 2, and for T required to be ultrametric or only additive.

3 New Models of Computation

The central problem we will be concerned with is called the graph sandwich problem and is a
generalization of several reasonable ways of modeling inaccuracies in the distance information.
We now describe this problem and the relevant specializations of this problem. We will refer to
an edge-weighted graph as a triple, G = (V, E, M), where V is the set of vertices, E is the set of
edges, and M is the weight function on the edges. The weight on edge e = (u, v) will be denoted
M (e) or M[u,v]. In all the problems we consider, we will assume that the weights in the input
are non-negative, bounded precision real numbers. However this assumption is not crucial and
all of our algorithms can handle negative weights after minor modification.

Graph Sandwich Problem

Input: Two edge-weighted graphs G, = (V, Ex, My) and G; = (V, E;, My).

Output: An edge-weighted tree T (if possible) such that M;[z, 7] < dg; for all (¢,5) € E; and
df < Mp[i, j] for all (4,5) € Ep.

Since T is a tree, d¥ is necessarily an additive metric. We may also require that T be
ultrametric. We distinguish between these two variations by calling the first the Graph Sandwich
to Additive Problem, and the second the Graph Sandwich to Ultrametric Problem. Clearly, the
above problem is a generalization of the following two problems, each of which has two versions
depending on whether the tree sought is ultrametric or merely additive.

Matrix Sandwich Problem

Given: Two n X n matrices, M; and M}, where M; is the lower bound and M}y is the upper
bound.

Output: An edge-weighted tree T (if possible) such that M;[z, j] < dg; < My, j] for all 7, 5.

Matrix Completion Problem .

Given: An n X n matrix M which is only partially filled in, so that for certain entries i,j we
have M, j] = “*” (which indicates that M][z, j] is unset).



Definition 2 A distance matriz M is said to be additive if it is possible to construct a tree T
together with weights on the edges such that for all i,7, M(i,j] = dz;

Definition 3 An edge-weighted tree T is called ultrametric if it can be rooted in such a way
that the lengths of all the root-leaf paths in the tree are equal. An additive distance matriz, M,
1s called ultrametric if it represents the inter-leaf distances of an ultrametric tree.

The primary motivation for using ultrametric distance matrices is that distances (as measured
in time) are ultrametric. That is, if we construct an evolutionary tree with the internal nodes
indicating speciation, then the natural distance to place on that edge is the amount of time
between the speciation events. In this case, if we define the distance function d;; to be equal to
twice the time since species ¢ and j diverged from a common ancestor, then d;; = lej,
matrix M with M(s,j] = d;; is additive. If in addition we require that the species in our set §
(which will occupy the leaves of the evolutionary tree we construct) are all extant species, then

the distance from the root to each leaf is the same, so that the tree is ultrametric.

so that a

A simple characterization of when a distance matrix is additive was discovered in 1971 by
Buneman in [5].

Fact 1 A distance matriz M is additive if and only if given any four points from the set of points
on which the distances are defined, we can name them t,j,k,l in such a way that

Mli, 5]+ M[k,l] = M[i, k] + M[j,1] > M[:,l] + M3, k]

This condition is called the four-point condition. When the pairwise distances between 1, j, k,
and [ satisfy the constraint above with strict inequality, it is easy to see that in any tree realizing
these distances, there is an edge e whose removal causes 7 and [ to lie on one side and j and & to
lie on the other.

In [38] Waterman et. al proved that at most one edge-weighted tree can realize an additive
distance matrix (assuming that no edge weight is zero) and provided an O(n?) algorithm to
construct such trees from additive distance matrices. Subsequently, O(nlogn) algorithms to
construct trees from additive distance matrices for bounded degree trees were found by several
authors (see for example [8]).

Ultrametric distance matrices also have two nice alternate characterizations.

Fact 2 For all sets of three leaves {3, 7, k}, M[i, j] < maz{M][i, k], M[j, k]}, or equivalently,
Any three points of S can be called i, j, k so that M[i,j] < M[j, k] = M[i, k]

One other characterization of ultrametric distances arises from thinking of distance matrices
as edge-weighted graphs. This obvious correspondence is used frequently in this paper, so we
spell it out here. Given an n X n symmetric matrix M we can represent the information in the
matrix by an edge-weighted n-node graph where the weight on the edge (%, j) is equal to the
matrix entry M[i,j]. In what follows, we will sometimes be concerned with partial matrices
where some of the values are unspecified. It is easy to model such a matrix as a graph where we
only have the edges that correspond to the specified entries.

Fact 3 [23] An additive distance matriz M is ultrametric if and only if for every cycle in the
weighted graph defined by M, the mazimal weight edge is not unique, i.e. the mazimal value
appears more than once.



states — A,C,T, or G. Constructing trees from characters is quite popular, especially recently
with the tremendous increase in sequence information. However, the problem of constructing
trees from characters in general is that constructing optimal trees from such data is NP-hard for
most interesting cases. Biologists interested in computing trees from characters have therefore
resorted to heuristics which find trees which are locally optimal, so that no local rearrangement
improves the score for the tree.

The other standard way of computing trees uses distances. Here, the input to the problem is
an n X n distance matrix M where M|z, j] is the observed distance between species 7 and j. Given
such a matrix, the objective is to find an edge-weighted tree 7" in which the distance dg; in the
tree between the leaves for 7 and j (defined to be the sum of the weights in the path between 7 and
j) is such that C(7',d) = 3, ; |d3; — M]3, 7]|* is minimized, where various choices of a correspond
to various norms. When it is possible to define the edge-weighted tree T’ so that C(T,d) = 0,
then the distance matrix is said to be additive. A polynomial time algorithm for reconstructing
trees from additive distances was given by Waterman et. al [38], who proved in addition that
at most one tree can exist. Their algorithm uses O(n?) time. However, distances drawn from
alignments of molecular sequences are hardly ever additive (see [38] for a nice explanation of
why this is), and in [9], Day showed that the optimization problem is NP-hard. Despite these
difficulties, biologists still compute trees from distances, and currently a multitude of methods
exist for this purpose. Unfortunately, these methods do not find optimal trees in all cases, and
either amount to unproven heuristics ([31, 33, 37, 12, 28] and others) or exhaustive search.

We motivate our models further with a brief discussion of why it is hard to obtain accurate
interspecies distances. There are several ways of computing these distances. Currently the
most common methods use alignments of biomolecular sequences for the species. Constructing
distances based upon alignments assumes that a biomolecular (i.e. DNA, RNA, or amino-acid)
sequence is obtained for each species in 5, and the sequences are homologous, so that they
correspond for example to genes with the same function. There are then two possibilities: the
distance between species ¢ and j is the score of the optimal pairwise alignment between the
associated sequences, or it can be the score of the pairwise alignment of the sequences for species
7 and j induced by an optimal multiple alignment. For pairwise alignments, there is no general
agreement about how to determine the correct pairwise alignment, whether a given alignment
is correct, and how to score a given alignment. Issues such as what the relative costs are of
various edit operations, how to score a gap of length k, etc., are the source of much debate in the
computational biology community [30, 38]. When aligning amino acid sequences, the Dayhoff
matrix [10] is commonly used, but even the values in this matrix are not universally accepted
(see for example [2, 18, 39]). Thus, the distance between species ¢ and j computed from an
‘optimal’ pairwise alignment may not be very reliable. Using multiple alignments only exacerbates
many of the problems mentioned above, for in contrast to pairwise alignments for which optimal
alignments can be found efficiently, optimal multiple alignments are computationally expensive
to find (all known algorithms for finding optimal multiple alignments, under a variety of criteria,
use exponential time, and some are known to be NP-hard[35]).

2 Preliminary Definitions
We define some simple terms in this section which are in use in the biological literature.

Definition 1 A phylogenetic tree for a species set S is a rooted tree in which the leaves are
labeled by the species in S, and the internal nodes represent the ancestors of the species.



A Robust Model for Finding Optimal Evolutionary Trees

Martin Farach* Sampath Kannan! Tandy Warnow?
DIMACS U. of Arizona Sandia National Labs

Abstract

Constructing evolutionary trees for species sets is a fundamental problem in computational
biology. One of the standard models assumes the ability to compute distances between every
pair of species and seeks to find an edge-weighted tree T in which the distance d;fpj in the
tree between the leaves of T' corresponding to the species ¢ and j exactly equals the observed
distance, d;;. When such a tree exists, this is expressed in the biological literature by saying
that the distance function or matrix is additive, and trees can be constructed from additive
distance matrices in O(n?) time. Real distance data is hardly ever additive, and we therefore
need ways of modeling the problem of finding the best-fit tree as an optimization problem.

In this paper we present several natural and realistic ways of modeling the inaccuracies
in the distance data. In one model we assume that we have upper and lower bounds for the
distances between pairs of species and try to find an additive distance matrix between these
bounds. In a second model we are given a partial matrix and asked to find if we can fill in the
unspecified entries in order to make the entire matrix additive. For both of these models we
also consider a more restrictive problem of finding a matrix that fits a tree which is not only
additive but also ultrametric. Ultrametric matrices correspond to trees which can be rooted
so that the distance from the root to any leaf is the same. Ultrametric matrices are desirable
in biology since the edge weights then indicate evolutionary time. We give polynomial time
algorithms for some of the problems while showing others to be NP-complete. We also consider
various ways of ‘fitting’ a given distance matrix (or a pair of upper and lower bound matrices)
to a tree in order to minimize various criteria of error in the fit. For most criteria this
optimization problem turns out to be NP-hard, while we do get polynomial time algorithms
for some.

1 Introduction

An evolutionary tree for a species set S is a rooted tree in which the leaves represent the species in
S, and the internal nodes represent ancestors. The most frequently used models of computation
for constructing these trees use either characters or distance matrices. Characters are functions
from the species sets to integers, and may be based on morphological data (such as the character
invertebrate-vertebrate, which has two states) or molecular data. An example of a character
arising from molecular data is the character whose value is the nucleotide present at a specific
position in a multiple alignment of DNA sequences for 5, in which case there are four possible
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