Fast, Fair and Frugal Bandwidth Allocation in ATM Networks

Yair Bartal* Martin Farach-Colton' Shibu Yooseph! Lisa Zhang?

July 7, 1998

Abstract

ATM networks are used to carry a variety of types of traffic. For some types of traffic, in
particular Awailable Bit Rate (ABR) traffic, the bandwidth of a network is typically insufficient
to satisfy the requests of all the sessions, and so some fair allocation scheme must be devised.
The ATM Forum, the standards setting body for ATM networks, has specified that the fairness
criterion for ABR traffic should be Maxz-Min Fairness, which intuitively means that raising the
bandwidth of any session comes at the expense of some other session of no greater bandwidth.

Protocols to allocate bandwidth to sessions in a max-min fair manner are an important
part of a network design. For a protocol to be realistic, it must conform to the Resource
Management (RM) Cell mechanism specified by the ATM Forum. Such RM Cells get sent as a
constant fraction of all cells sent by the source, however they have only a few fields. RM Cells
are the only means of communication allowed between switches so any reasonable protocol is
totally distributed and asynchronous, since the RM Cell mechanism does not easily lend itself
to synchronization.

Finally, RM Cells must be handled very quickly at the switches. We call a protocol frugal
if the switch spends O(1) computation on each RM Cell it receives, and it has O(1) local space
for each session through it.

Recently, several frugal RM Cell protocols have been proposed for ABR traffic, but none
have been shown to converge to the max-min fair state. Protocols which are known to converge
in a linear number of maximum roundtrip times require RM Cell processing which is linear in
the number of session at a switch. In this paper, we give a frugal RM Cell protocol for ABR
that matches the convergence time of the fastest known non-frugal protocol.

A second type of ABR traffic is the Minimum Cell Rate (MCR) type, where every session
can specify a minimum amount of bandwidth. The max-min fair allocation should then respect
these MCR requests. We extend our results to give the first frugal RM Cell protocol for MCR
and achieve a quadratic convergence rate.

*Bell Laboratories. yair@research.bell-labs.com
fBell Laboratories. farach@research.bell-labs.com
¥DIMACS. yooseph@dimacs.rutgers.edu

$Bell Laboratories. ylz@research.bell-labs.com

1 Introduction

Asynchronous Transfer Mode (ATM) technology is critical for modern communication networks,
which are being designed to carry many different types of traffic. An ATM network consists of
switches with capacities. A session is specified by a path in the network, along with a request for
bandwidth. The capacity of a switch is parcelled out to the sessions going through that switch.
Some sessions may have bandwidth allocated on a Quality of Service (QoS) basis. In this case,
their entire bandwidth requests will be fulfilled at every switch they traverse. However, not all
sessions require a guarantee of bandwidth. Instead, some client may be willing to take a variable
amount of bandwidth in exchange for, say, lower costs. In this paper, we focus on such non-QoS
sessions, assuming that all the QoS requests along with the necessary bandwidth are removed from
the network.

For non-QoS sessions, a bandwidth allocation protocol, also known as flow control, is a crucial
part of an ATM network. In this paper, we give such protocols for the two standard forms of
non-QoS services. We give the first protocols that have provable convergence and that conform to
both the communications standards set by the ATM Forum and the computational limitations of
ATM switches.

The ATM Forum has specified two types of non-QoS sessions. In Awvailable Bit Rate (ABR)
sessions, each session ¢ has a requested bandwidth p; and is allocated a fair amount of the available
bandwidth of at most p;. In Awailable Bit Rate with Minimum Cell Rate (MCR) sessions, each
session ¢ has a minimum required bandwidth MCR; in addition to the maximum requested band-
width p;. Each session gets a fair amount of available bandwidth, consistent with respecting all
session minima, and maxima. Without loss of generality, we assume that each session i comes with
an infinite bandwidth request by adding an extra switch at the source with capacity equal to the
actual p;.

In this paper, we are concerned with the fair allocation of bandwidth to ABR and MCR sessions
at all switches. (Some admissions control mechanism is assumed to maintain the feasibility of the
MCR sessions.) There are many possible notions of a fair bandwidth allocation in an ATM network.
The one adopted by the ATM Forum is Maz-Min fairness. Informally, an allocation is said to be
max-min fair if raising the bandwidth of any session would require that some other session of
no greater allocation have its allocation reduced, or have its MCR violated. Formally, we define
max-min fairness as follows. Let @ = (a1,...,an) be an allocation vector if session i is allocated
bandwidth a;. An allocation vector @ is feasible if a; > MCR,; for every session 7, and) ;¢ s; 00 < Cj
for every switch j where S; denotes the set of sessions going through j, and C; denotes its capacity.
For an allocation vector @, let sort(a) be the sorted sequence of the a; values. An allocation @
is maz-min fair if it is feasible, and if its sort(d@) vector is lexicographically greatest amongst all
sorted vectors of feasible allocations.

Finding the max-min allocation in a centralized manner is easy. Bertsekas and Gallager [4]
presented a simple iterative algorithm to compute the max-min fair vector for ABR sessions. In
the first iteration, each switch computes how much bandwidth it can give to each session by dividing
its bandwidth by the number of sessions going through it. The switch is found that has the lowest
such per session bandwidth, and all sessions through that switch are allocated that bandwidth.
This switch is called the bottleneck switch for all sessions going through it. All such sessions, along
with their allocated bandwidth, are removed from the network, and the procedure is repeated on
the residual network. This protocol is easily modified to handle MCR sessions. At each iteration,

all sessions are found such that there is some switch which has allocated it less than its MCR.
That session is given its MCR for its allocated bandwidth, and is removed from the network, and
the procedure is repeated. The admissions control policy allows us to assume that this procedure
maintains feasibility. If at some step all sessions are allocated at least their MCR at every switch,
then the switch with the lowest bottleneck level is found, as before, and all sessions through that
switch are removed. The procedure then moves on to the next iteration.

This protocol is useful for gaining some understanding of max-min fairness, but is inadequate
for implementation. As the name implies, ATM networks are asynchronous. Furthermore, with
the exception of expensive procedures such as admissions control, they are distributed. The ATM
Forum has specified that, for the purposes of bandwidth allocation, sessions and switches may only
communicate through Resource Management (RM) cells. An RM cell consists of a small number
(2 for ABR, 3 for MCR) of fields which can be updated by the source and switches. One in every
32 packets injected into the network must be an RM cell, so the source sends out new RM cells
before receiving old ones. Thus, each session has many RM cells active in a network at once. The
transmission of an RM cell by the source, and the updating of these small number of fields by
switches is all the communication that can take place in the network.

Our Results. In this paper, we design fast and frugal protocols to achieve exact max-min fairness
using only RM cell communication, both for ABR and MCR sessions. A protocol is frugal if each
update of an RM cell requires O(1) memory per session and a total of O(1) local computation over
all sessions. A fast protocol converges to the max-min fair allocation in a small number of round
trip times of the RM cells, where the round trip time is taken to be the maximum over all session
in the network. Let b be the number of distinct bottleneck levels at convergence. Let m be the
number of switches in the network and n be the number of sessions. Note that b < m,n. We
provide protocols with the following properties:

Our ABR protocol converges within O(b) roundtrips. This convergence time matches the fastest
known convergence for a non-frugal protocol. No frugal protocols were known to converge at all.

Our MCR protocol converges within a number of roundtrips which is O(nm). We give a tighter
bound below. While a non-frugal protocol in known with O(b) roundtrip convergence, ours is, to
the best of our knowledge, the first frugal protocol known for MCR sessions, and the first frugal
protocol which can be shown to converge.

The difficulty in proving the convergence of these protocols is that many of them tend to
oscillate, thus destabilizing already converged parts of the network. If some damping is put into
the protocols to reduce the oscillations, then it is tricky to show that the protocols make progress.
Thus, we achieve a balance between damping oscillations and non-negligible progress in order to
prove our results.

History. Many max-min fair protocols have been designed. In [4], the simple centralized algo-
rithm described above was converted into a distributed one, but synchronization of all switches for
each iteration was assumed. Other earlier algorithms [10, 12, 8] all required synchronization.
Much effort has been made to design distributed and asynchronous protocols. Mosley [14]
and Ramakrishnan, Jain and Chiu [15] were amongst the first to design asynchronous protocols.
Unfortunately, Mosely’s protocol did not have satisfactory convergence performance. The protocols
offered by Charny, Clark and Jain [5, 6] were amongst the very few that have provable convergence in

the distributed and asynchronous setting. The number of round-trip times required for convergence
was O(b). However, Charny’s protocol was not frugal. Each update required an amount of work
linear in the number of sessions crossing the switch. Hou, Tzeng and Panwar [11] generalized
Charny’s protocol to MCR sessions with linear update complexity and O(b) roundtrip convergence
time.

Recently, many distributed and asynchronous protocols were invented, e.g. [7, 13, 16, 17, 18|.
In particular, the protocol by Kalampoukas, Varma and Ramakrishnan [13] was frugal. Although
their protocol did not have a provable convergence bound, it showed fast convergence in extensive
simulations. Other recent work includes [1] which presented a synchronous and convergent protocol
for MCR sessions.

Algorithms have been considered for finding an approrimate max-min allocation for ABR ses-
sions [3]. However, in [2], Afek, Mansour and Ostfeld prove that the max-min fair vector can be
sensitive to small changes. For example, if the allocation to one session is changed by J, then the
allocation to some other session may be changed by 9(62"/ 2), where n is the number of sessions
in the network. This means an approximated max-min fair solution, e.g. bandwidth allocations
restricted to integral components only, can be substantially different from the exact solution.

2 Preliminaries

2.1 Bottlenecks

The concept of bottleneck is central to max-min fairness. In order to discuss bottlenecks in more
detail, let us first introduce some notation. Let (ai,as...,a,) be the max-min fair vector, where
a; is the allocation to session ¢ for 1 <7 < n. A switch is saturated if the total allocation is equal
to the switch capacity; a switch is unsaturated otherwise.

The bottleneck level Ly of an unsaturated switch s is infinity. For a saturated switch s, the
bottleneck level is the maximum allocation of the sessions at s that get more than their MCR’s,
i.e. Ly = mazies,a; where S, is the set of sessions that go through s and whose allocations are
more than their MCR’s. If S is empty, then Ly = 0. (In the case of ABR sessions, the bottleneck
level of a saturated switch s is simply the maximum allocation at s.) A session i is bottlenecked
at switch s if s has the lowest bottleneck level among all the switches along the path of session 1.
Switch s is called the bottleneck switch of session 3.

We now order the switches s1,5s92,...,5, by their bottleneck levels, such that L, < L, , for
1 < k < m. For notational simplicity, we denote L, by L; and refer to the set of sessions that are
bottlenecked at switch s; as Sk. We also assume Ly < Ly for 1 < k < m, since our proofs upper
bound the time for all switches with the same bottleneck level to converge, thus we do not really
distinguish between them.

2.2 RM Cells

In this paper, an RM cell has the form (A;,t) and for an ABR session ¢ and has the form
(Ai,MCR;,t) for an MCR session i. The first field A; represents the current requested band-
width from session 7, and the last field represents the current bottleneck switch of session 7. During
each update, a switch updates A4; and t before passing the RM cell to the next switch.

2.3 Local Labels

Our protocols locally label sessions at each switch. We first focus on ABR sessions. At each switch,
a session can be labelled either SAT or UNSAT. These labels are given when the session is updated at
the switch, and thus different sessions are given their labels at different times. Informally, a session
is labelled sAT if given the current state at the switch the protocol can allocate to the session at
least its current requested bandwidth, and is labelled UNSAT otherwise. Labelling is a local event,
i.e. a session can be labelled SAT by one switch but UNSAT by another. At convergence each session
is labelled UNSAT at its bottleneck switch(es) and SAT elsewhere.

Each switch uses a number of quantities to determine the label of the sessions. The current
allocation to session ¢ at s, is A. The residual level is the amount of allocation to the UNSAT
sessions if all the SAT sessions fulfill their requests. Formally, the residual level R at switch s is,

C_Z. AS
R= 1€S z’
|U|

where C is the switch capacity of s, S is the set the SAT sessions at switch s, U is the set of UNSAT
sessions at s. If the allocation to some SAT session is higher than R, then this SAT session is getting
more than its fair share. It is important to point out that the residual level at a switch can be
computed in O(1) time, as long as the switch keeps track of the sum of the SAT allocation and the
number of UNSAT sessions.

In the case where sessions have MCR requirements, a session can be labelled SAT, UNSAT or
MCR. In this case the residual level at switch s is defined as follows:

C—2ies 4] — 2iem MCR;
|U| ’

R=

where M is the set of MCR sessions at switch s, and the other quantities are defined as before.
Other useful quantities include the maximum allocation to a SAT session at a switch s, i.e.
MAXSAT = max;cg A7, and the minimum allocation to an MCR session at s, i.e. MINMCR =
min;c y MCR;. However, neither quantity can be updated in O(1) time for every update. Instead,
we keep an upperbound for MAXSAT and a lower bound for MINMCR. This is further explained
in Section 2.4.
Local labelling is used in some previous work, e.g. [5, 6, 13]. The computation of the residual

level also appears in [13].

2.4 Phases and Round-trip Time

In a distributed and asynchronous setting each switch performs local computations whenever it
receives an RM cell. Our protocols make use of the notion of phases for fast local updates. Each
switch independently partitions time into phases. A phase at a switch s is the time period during
which s receives at least one RM cell from every session that goes through s. It is easy to keep
track of the beginning and end of each phase. Our protocols keep a bit vector that associates a bit
with each session that goes through the switch. At the beginning of a phase, each bit is set to the
same value, say 0. Whenever an RM cell arrives, the corresponding bit is set to its complement,
in this case 1. When all bits are set to the same value, which we can detect by keeping a counter
which we update when we flip a bit, the current phase ends and a new phase begins.

We now use phases to keep track of MAXSAT and MINMCR, or more precisely an upperbound
of MAXSAT and a lowerbound of MINMCR. For example the computation of MAXSAT is per-
formed as follows. During one phase, each switch records the maximum bandwidth that is ever
allocated to a SAT session. At the end of the phase we set MAXSAT to this value. During the
next phase, MAXSAT is updated whenever a SAT session gets an allocation higher than the current
MAXSAT. As we shall see in Sections 3 and 4 our analysis takes this effect into account.

We emphasize again that phases are defined independently for different switches. Hence, each
switch can operate asynchronously. It is also easy to see that only O(1) computation per update is
required to keep track of the phases and the max/min values.

We measuer the convergence time in round-trip time, i.e. the maximum time taken by an RM-
cell to go from source to destination and back. Note that a phase is no longer than one round-trip
time, and typically much shorter.

3 A Convergent ABR Protocol

3.1 Protocol Description

Every switch maintains local SAT and UNSAT labels of sessions as described. We break the protocol
into two parts: the local computation and the forwarding action. The local computation determines
how the session will be labelled locally, and other actions such as how much bandwidth it will be
allocated locally. The forwarding action determines the content of the RM cell which will be passed
along.

When an RM cell of session ¢ passes through the switch we compute the residual level, R, in
constant time, according to the current local labels. We use R to determine the new label for
session i. The session is labelled SAT if its current request (passed in the RM cell) is smaller than
R, and otherwise it is labelled UNSAT.

For the forwarding action sets the new request for the session. To determine that we compute
the “bottleneck level”. Intuitively, at convergence we want this level to be equal to the residual
level. However, because of the distributed way in which the session labels are updated, the residual
level may be too low and using that level as a bottleneck may destabilize sessions that are already
stable. The residual level can be artificially low when there are sessions labelled SAT at a level
higher than their final max-min fair level. Thus, to keep the bottleneck high enough, we set it to
B = max{MAXSAT, R}. If B is lower than the current request then the new request is updated
to be B and the switch becomes the bottleneck switch for the session.

The bottleneck level B can be higher than the current request for two reasons. The session
may have some other bottleneck, and so the session request should not be changed. Otherwise, the
current switch is the bottleneck, and B has increased since the session was last updated. In this
case, we should increase the request to B. Thus, only the bottleneck switch is allowed to increase
the level.

The psuedocode for the local computation is given in Figure 1 and that for the the forwarding
action is given in Figure 2.

Local computation: update the label and allocation for session %
1 Compute residual level R, treating i as UNSAT

2 if R> A;
label 7 SAT
set A = A;
3 if R<A;
label ¢ UNSAT
set A} =R

Figure 1: Local computation at switch s upon receiving (A;,t), a session-i RM cell.

Forward RM cell for session
4 Compute bottleneck level, B = max{MAXSAT, R}

5 ifs=t
pass (B, 1) { t remains bottleneck }
6 ifs#t
7 if A, < B
pass (A;,t) { t remains bottleneck }
8 itA;, >B
pass (B, s) { s becomes new bottleneck }

Figure 2: RM Cell Forwarding Action at switch s upon receiving (A;,t), a session-i RM cell.

3.2 Convergence of the Protocol

We say that session ¢ is stable if ¢ gets its max-min fair allocation a; on every switch on its path
and if 7 is labelled UNSAT at its final bottleneck switch and labelled SAT elsewhere. We also say
that a switch s is stable if every session that goes through s is stable.

We show that the sessions in &7 become stable first, and then sessions in Sy, S3, etc., become
stable. In the end all sessions are stable, which means our protocol converges to max-min fairness.
Let Sy be an empty set. We first observe,

Lemma 1 For 0 < k < m, if every session in Sy, S1,...,Sk remains stable, then the bottleneck
level B computed during each update is at least Ly at switches s € {Sg1+1,Sk+2y---sSm}-

Proof: By definition, the bottleneck level B is the maximum of the residual level R and the
maximum satisfied allocation MAXSAT. If MAXSAT > Ly, then we are done. Otherwise,
MAXSAT < Lg4q. Let C, be the remaining capacity at switch s after satisfying the requests of
the sessions in Sy,...,Sg. For all other sessions that go through s, let be the number of such
sessions. Among these x sessions let y be the number of the SAT ones and Y be the allocation to
these y sessions. We hayve,

Cr

- > Lgy

= Cr,- -Y Z .TLk+1 — yLk+1
C.-Y
r—Yy

= R=

> Lgy1

The first inequality holds since every session in Si,...,S; remains stable by assumption and the
final bottleneck level of s is at least Li,1. The second inequality holds since MAXSAT < Lgy;.
O

Lemma 2 For 0 < k < m, if every session in Sy, S1,...,Sk remains stable, then after one round-
trip time every RM-cell of every session i in Ski1,...,Sy has the form (A;,t) for A; > L.

Proof: Consider the first time session ¢ is updated at a switch ¢, where t is either the current
bottleneck of 7 or ¢ becomes the bottleneck of ¢ due to this update. In either situation, ¢ passes
(B,t) to the next switch, where B is the bottleneck level. (See line 4 of Figure 2.) By Lemma 1,
B is at least Lg;i. Now consider every subsequent update of i on any switch s. (Note that
s € {Sk+1,---,5m}.) For this update, s receives (A}, ¢') where A, > Li.1 and passes on (A7, ")
where A > Ljq. The latter holds since both A; and the bottleneck level B are at least Lj1.
(See lines 4, 6 and 7 of Figure 2.)

Note that in one round-trip time, session 7 is certainly updated by such a switch ¢ as described
in the above paragraph. Hence, the lemma, follows. a

Lemma 3 For 0 < k < m, if every session in Sy, S1,...,S, remains stable, then after three
round-trip time every session in Si+1 becomes stable and remains stable.

Proof: We prove by induction on k. Since Sy is empty, the base case that every session in
So remains stable holds trivially. Now we assume that every session in &i, ..., S, remains stable,
where 0 < k < m.

We first show that, after three round-trip time, switch siy; remains the bottleneck of every
session in ¢ € Sk41, i.e. it labels session ¢ UNSAT and allocates L; to it. By Lemma 2, every RM
cell of session 7 € Sg11 requests at least Ly, after one round-trip time. Hence, during the second
round-trip time s either labels ¢ € Sk UNSAT, or labels ¢ SAT and allocates at least Ly to i.
At the end of the second round-trip time, the residual level at sx1is at most Ly since sessions in
81, - - -, Sk remain stable. During the third round-trip time, sx11 labels every ¢ € S11 UNSAT. At
the end of the third round-trip time, the residual level at sgy1 is Lg4+1. From now on, sx41 labels
t € Sk+1 UNSAT and allocates Lgiq to i. As a result, the RM cells of sessions ¢ € Sk remain in
the form (Lgy1,sk+1) for any subsequent update at any switch. This is guaranteed by Lemma 1
and line 6 of Figure 2.

It remains to show that switches s € {sgi9,...,8,} label i € Sky1 SAT and allocate L to i.
We first show that the residual levels at switches sgyo9,...,Sn become higher than Ly, at some
point. By Lemma 2, every RM cell of session ¢ in Sk1,...,Sy requests at least Ly, after one
round-trip time. During the second round-trip time if s labels some session ¢ in Sg41,...,S Sy, SAT
then the residual level R must be higher than Ly ;. (See line 2 of Figure 1.) Otherwise, s labels
every session ¢ in Sk41, - . . , Sy, UNSAT, in which case R is higher than Lg 1 by the end of the second
round-trip time.

Finally, we show that the residual levels at switches sgy9,..., S, remain higher than Ly, for
every subsequent update. Let (A;,t) be an RM-cell that arrives at s € {sg+2,...,5m}-

Case 1: 7 in §y,...,S;. By assumption, session i is stable. Since the residual level is higher
than Ly,q before this update and A; < L1, the residual level is unchanged by this update.

Case 2: ¢ in Sgy1,...,Sn. By Lemma 2, A; > L, after one round-trip time. If 7 is labelled
SAT after this update, then the residual level R after this update is higher than A; and thus higher
than Lgi1. (See line 2 of Figure 1). If 4 is labelled UNSAT both before and after this update, then
R is not changed by this update. If ¢ is labelled SAT before and UNSAT after this update, we define
the following variables for the configuration at switch s right before this update. Let A’ be the
allocation to session %, R’ be the residual level, z be the number of sessions labelled UNSAT and Y
be the total allocation to the SAT sessions. If C' is the switch capacity of s, then,

_C-Y

R > Ly
= (C- (Y—AI) >$Lk+1 + A > (.l‘—f-l)Lk_H
C— (Y — A
= R=—"+—""=">L§.;.
(z+1) kit

The second line follows from the fact that A" > Ly, due to Lemma 2.

To summarize, we have shown the following. First, after three round-trip time, every session
in Sky1 is labelled UNSAT and gets Lg41 at switch sg41, and requests exactly Lgy1 in its RM cells.
Second, after two round-trip time the residual level at switches siy2 and higher remain higher than
Ly.1. Hence, after three round-trip time every session in Sk is labelled SAT and gets Ly, at
switches sgy9 and higher. Thus, all sessions in Sk11 become and remain stable in three round-trip
time. O

We have shown,

Theorem 4 OQur protocol for the ABR sessions requires O(1) local computation per update and
converges to the max-min fair vector in 3m round-trip times, where m is the number of bottleneck
levels.

4 A Convergent MCR Protocol

4.1 Protocol Description

Each switch performs the protocol independently. As in the ABR case the protocol is composed of
two parts. Once part carries the local computation of the SAT, UNSAT and MCR labels at the switch,
and the other part determines the new request for the session that is currently being updated.
Both parts of the algorithm use a threshold level, 7. Intuitively, the threshold is chosen so that
first sessions that should be labelled MCR will gradually receive their correct labels and then it
will be equal to the residual level.
The threshold is based on the following refined definition of the residual level, R.

C—Yies Al — Xiem MCR;

Here, C' is the switch capacity, S is the set of SAT sessions, M is the set of MCR sessions and U is
the set of UNSAT sessions. We also have the following special cases:

R=oo if U=0andC—> A;— > MCR;>0
1€S €M

R=

R=0 if U=0andC—-> A;—> MCR;<0.
1€S €M
The other quantity required to define the threshold is MINMCR. Recall that MINMCR is the
minimum allocation of an MCR session which is (computed as described in section 2.4). Also, let
MINMCR = oo if M = ().
Finally, the threshold 7 is defined as 7 = min{ R, MINMCR}. The threshold is computed at the
beginning of each phase and remains unchanged throughout the whole phase.

Local computation: =~ When a session-i RM cell (4;, MCR;,t) arrives, the new label and allo-
cation of session ¢ are determined by comparing A; to the threshold 7.

The session is labelled SAT if its current request (passed in the RM cell) is smaller than 7, it is
labelled McCR if its MCR value is at least 7, and otherwise it is labelled UNSAT.

The only exception is during a “special phase” which is executed once we end a phase in which
7 = MINMCR and R > 7 (note that R is the new residual level). During the special phase we
relabel MCR sessions with MCR value equal to MINMCR, as UNSAT and do not make any changes
to other labels.

A pseudocode of the protocol is given in Figure 3.

Forwarding action: The value passed along in the RM cell is dependent on whether is switch
is currently steady or not.

A switch s is said to be steady if the threshold 7, and the label and allocation of every session
at s, remain unchanged in the previous two phases. The switch keeps track of whether it is steady
at the end of a phase.

If the switch is steady, then the bottleneck level B is defined to be max{r, MCR;}; otherwise,
B = oo. The forwarding action is then similar to the ABR case.

In our pseudo code of the protocol we have omitted the code that checks to see if the switch
is steady or not. We note that this is easily done by keeping track of 7 and also the label and
allocation for each session. At the end of an update, if any of these quantities change, then the
switch is declared unsteady.

A pseudocode of the protocol is given in Figure 4.

4.2 Convergence of the Protocol

A switch s is stable if every session that goes through s gets its max-min fair allocation and is
labelled correctly at s. We proceed to show that our protocol converges to the max-min fair
allocation. The outline of our argument is as follows:

e Assuming si, S,...,5; remain stable, for any j > k, if switch s; becomes steady, then its
threshold is higher than Ly 1.

e In particular, sg1 will become steady at level exactly Liy; and thus will become stable.
After this happens, any switch s;» (where j' > k+1) can become steady only at a level higher
than Ly,q1. This implies that sgy; will remain stable.

Local computation: update the label and allocation for session %

1 ifA, <7 { 7 is the current threshold }
label 7 as SAT
set A = A;

2 if MCR; <7 < A;
label 7 as UNSAT
set A =7

3 if 1 <MCR;
label ¢ as MCR
set A7 = MCR;

At the end of a phase
4 Recompute the residual level R.
5 if 7= MINMCR and 7 < R
execute a new phase
label session ¢ UNSAT if MCR; = MINMCR
all other sessions unchanged
6 set 7 =min{R, MINMCR}
7 start a new phase with threshold 7

Figure 3: The local computation at switch s when an RM cell (4;, MCR;,) is received.

In the max-min fair allocation, let A denote the amount of bandwidth allocated to UNSAT
sessions at a switch, i.e. the numerator of Equation (1), and let n denote the number of UNSAT
sessions, i.e. the denominator of Equation (1). Note that A/n is equal to the bottleneck level of
the switch at convergence.

Lemma 5 Suppose switches s1,82,...,5, remain stable. For any j > k, if switch s; becomes
steady, then the threshold T at s; is at least L.

Proof: When a switch is steady, it must be the case that 7 = R < MINMCR. Otherwise, the
session with MCR request equal to MINMCR. would have been labelled SAT or UNSAT. For the
purpose of contradiction, we assume 7 < Lg; and show that the residual level at the end of the
phase is greater than 7. Hence, switch s; could not have been steady.

We observe that sessions that are MCR in the max-min fair state are correctly labelled, since
T < Lg41 < Lj. Furthermore, only the following mislabellings are possible at the end of the current
phase.

e A session that is UNSAT in the max-min fair state of s; but is currently labelled SAT. Let ng
denote the number of such sessions. Each such session has a current allocation at most Fy,
where 1 <7 < Lj.

e A session that is UNSAT in the max-min fair state of s; but is currently labelled MCR. Let ng
denote the number of such sessions. Each such session has a current allocation at most Fb,
where Fy < L;.

10

Forward RM cell for session %
8 if switch s is steady

bottleneck level B = max{r, MCR;}
9 if switch s is unsteady

bottleneck level B = oo

10 if s=1¢
pass (B,MCR;, t) { t remains bottleneck }
11 if s £t
if A, < B
pass (A;, MCR;, t) { t remains bottleneck }
if A; > B
pass (B,MCR;, s) { s becomes new bottleneck }

Figure 4: The forwarding action at switch s when an RM cell (A;, MCR,,) is received.

e A session that is SAT in the max-min fair state of s; but is currently labelled UNSAT. Let ng
denote the number of such sessions. Each such session has a max-min allocation at least F3,
where F3 > 7.

e A session that is SAT in the max-min fair state of s; but is currently labelled MCR.
Recall A/n = L;. From the above observations, we have,

A—’I’LlFl
n—ni
A—’anl —n2F2
n—ny — Ny
A —niF| —ngFy + ngF3
>T

n—mnp —ng + ng

>Lj>7'

>Lj>7‘

In the left-hand-side of the last expression, if we account for the final SAT sessions that are currently
labelled MCR, then its numerator increases. Thus, the residual level R at the end of the current
phase is greater than 7. We have thus reached the contradiction. O

Lemma 6 Suppose switches s1, 82, ..., S, remain stable. After one round-trip time, every RM cell
(A;, MCR;,t) of every session i € Sgy1 remain in the form A; > Lpyq.

Proof: The proof is almost identical to that of Lemma 2. The only difference is in the definition
of the bottleneck level B. Lemma 5 ensures that B is at least Ly ;. a
Since a session that is labelled MCR at a switch s; (where j < k4 1) can be labelled SAT in the
max-min fair state of s;41, the allocation for a SAT session at s;; need not correspond to any L;.
Thus, lets use B1, By, ..., By to denote the distinct allocation levels in the max-min fair state at
switch sg11. We have Ly, = By, for some r < p. Also, let ¢ be the number of sessions at switch

Sk+1-

11

Lemma 7 Suppose switches s1, 82, ..., s, remain stable. If every RM cell (A;, MCR;,t) for every
session i € Ski1 18 such that A; > Lgy1, then in O(q) round-trip time, switch sk.1 becomes stable
at level L.

Proof: The proof is by case analysis, and appears in the appendix. O

We now show that s;1 remains stable. From Lemma, 5, we see that any switch s; (where j > k)
that becomes steady, has threshold at least Lg;. We can modify Lemma 5 easily to show that the
threshold at any steady switch s;, where j > k + 1, is greater than L. Thus, once switch s;1
becomes stable, every session i € Sy41, will be labelled SAT at s;, when s; is steady. Hence s; will
never become the bottleneck switch for these sessions. Thus, once switch s becomes stable, it
remains stable.

Theorem 8 Let N = Zsj |S;|, where S; is the set of sessions that go through switch s;. Given
a network with sessions that have MCR requirements, our protocol converges to the max-min fair
allocation in O(N) round-trip time.

Acknowledgment

The authors wish to acknowledge Lampros Kalampoukas for many helpful discussions.

References

[1] S. Abraham and A. Kumar. A stochastic approximation approach for max-min fair adaptive
rate control of ABR sessions with MCRs. In Proceedings of INFOCOM 98, pages 1358 — 1365,
San Francisco, CA, March 1998.

[2] Y. Afek, Y. Mansour, and Z. Ostfeld. Convergence complexity of optimistic rate based flow
control algorithm. In Proceedings of STOC’96, pages 89 — 98, Philadelphia, PA, May 1996.

[3] B. Awerbuch and Y. Shavitt. Converging to approximated max-min flow fairness in logarithmic
time. In Proceedings of INFOCOM 98, pages 1350 — 1357, San Francisco, CA, March 1998.

[4] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Englewood Cliffs, NJ, 1992.

[6] A. Charny. An algorithm for rate allocation in a packet-switching network with feedback.
Master’s thesis, MIT, 1994.

[6] A. Charny, D. Clark, and R. Jain. Congestion control with explicit rate indication. In Pro-
ceedings IEEE ICC"95, pages 1954 — 1963, 1995.

[7] R. Jain et al. ERICA switching algorithm: a complete description. ATM Forum Contribution,
96-1172, August 1996.

[8] E. Gafni. The integration of routing and flow control for voice and data in a computer com-
munication network. PhD thesis, MIT, 1982.

[9] E. Gafni and D. P. Bertsekas. Dynamic control of session input rates in communication
networks. IEEE Transactions on Automatic Control, pages 804 — 823, November 1984.

12

[10] Hayden H. Voice flow control in integrated packet networks. Technical Report LIDS-TH-1152,
MIT Laboratory for Information and Decisions Systems, Cambridge, MA, 1981.

[11] Y. T. Hou, H. Y. Tzeng, and S. Panwar. A generalized max-min rate allocation policy and
its distributed implementation using the ABR flow control mechanism. In Proceedings IEEE
INFOCOM, pages 1366 — 1375, San Francisco, CA, March 1998.

[12] J. M. Jaffe. Bottleneck flow control. IEEE Transactions on Communication, pages 954 — 962,
July 1981.

[13] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan. Dynamic explicit rate allocation al-
gorithm for ABR service in ATM networks. In Proceedings of the 6th IFIP International
Conference in High Performance Networking, pages 143 — 154, September 1995.

[14] J. Mosley. Asynchronous distributed flow control algorithms. PhD thesis, MIT, Cambridge,
MA, 1984.

[15] K. K. Ramakrishnan, R. Jain, and D. Chiu. Congestion avoidance in computer networks with a
connectionless network layer. Technical Report DEC-TR-510, Digital Equipment Corporation,
1987.

[16] L. Roberts. Enhanced PRCA proportional rate control algorithm. ATM Forum Contribution,
94-0735R1, August 1994.

[17] K. Y. Siu and H. Y. Tzeng. Intelligent congestion control for ABR service in ATM networks.
ATM SIGCOMM Computer Communication Review, 24(5):81 — 106, October 1994.

[18] N. Yin and M. G. Hluchyj. On closed-loop rate control for ATM cell relay networks. In
Proceedings IEEE INFOCOM’9/, pages 99 — 108, June 1994.

A Proof of Lemma 7

Proof: The proof is by case analysis. Case 1 is when the current threshold is above Ly; in
this case, we show that, in at most (p—r) round-trip time, the threshold will become at most Ly 1.
Case 2 is when the current threshold is at most Lg1; in this case, we show that, in at most O(q)
round-trip time, the threshold will become Ly, and then siy; will become stable.
Case 1: 7> Ly.

In this case note that, at the end of the current phase, every session, whose max-min share is
below Ly1 or above 7, is correctly labelled and gets its max-min share.

Let MAXMCR denote the largest MCR value that is less than 7 at the end of current phase.
There are two subcases to handle depending on whether MAXMCR is above or below Ly 1.

(i) MAXMCR > Lgyq: in this case we claim that the threshold 7 for the next phase is less
than MAXMCR. The proof of this claim follows.

The only sessions that can be mislabelled at the end of this phase are those sessions that are
UNSAT in the max-min fair state but are currently labelled SAT and also those sessions that are
MCR in the max-min state but are currently labelled SAT or UNSAT.

13

Let ny1 denote the number of final UNSAT sessions that are currently labelled SAT; each of these
sessions has current allocation at least F; > Lg,1. Let ny denote the number of final MCR sessions
that are currently labelled UNSAT; each of these sessions has a max-min share F» < MAXMCR.

Recall that in the max-min state Ly, 1 = %. Since F1 > Lgy1,

A —n1F1

< Lgy < MAXMCR
n—nq
Now, Fy, < MAXMCR implies that

A —ni1F +noFy

n—mni+ ng

< MAXMCR

If we take into account those final MCR sessions that are currently labelled SAT then the numer-
ator of the above expression decreases. Thus the residual level R at the end of the current phase is
less than MAXMCR. Thus the new 7 is less than MAXMCR.

Since there are p —r M CR levels above L1, we note that the above subcase holds true for at
most p — r round-trip time after which the following happens.

(ii) MAXMCR < Lg41: in this case we claim that the threshold for the next phase is less than
L. The proof of this claim follows.

Since every session with MCR level below 7 is labelled either SAT or UNSAT, and since
MAXMCR < Lgq1, it follows that every final MCR session is correctly labelled. Thus the only
sessions that can be mislabelled are those sessions that are labelled UNSAT in the max-min fair
state but are currently labelled SAT; these sessions currently get allocation at least L.

In the max-min state Ly = %. Let n1 be the number of sessions that are currently incorrectly
labelled sAT. Each of these sessions get allocation at least F} (where F} > Li.1). Then the residual
level at the end of the current phase is

R< A-mh < Lyt
n—ny

Thus the new threshold 7 is at most Ly ;.

Hence, if we are in Case 1, then, in at most p — r round-trip time, the threshold 7 will become
at most Lyi. We note that in Case 1, if # UNSAT = 0, then C' — 3 ;. g AY — > ;c 7 MCR; < 0, and
thus R = 0 < Lg1; thus, in this case, the threshold is set to 0 for the next phase.

Case 2: 7 < Lgyg.

Suppose 7 < Ly11. Let By (for some [) denote the highest max-min fair allocation at sg, that
is less than 7. We will show that, at the end of the next phase, the threshold will be greater than
min{B;;,, MINMCR at end of next phase}.

At the end of the current phase, all final MCR sessions are correctly labelled. In addition, all
final SAT sessions with max-min shares below 7 are correctly labelled with allocations equal to their
max-min share. The only possible mislabellings involve final UNSAT sessions that are currently
labelled MCR and final SAT sessions that are currently UNSAT or MCR. Let n; denote the number of
final UNSAT sessions that are currently mislabelled as MCR; each such session has allocation at least
Fy (where current MINMCR < F; < Lgy1). Let ng denote the number of final SAT sessions that
are currently mislabelled as UNSAT; each such session has a max-min allocation at least Fy > By .

In the max-min fair state % =Lgy1-

14

Suppose MINMCR < Lg;1. Then we have
A — anl

n—ni

> Lj.1 > MINMCR

Now, if MINMCR < By, then

A —nF1 + noFy
n—ni+ ne

However, if MINMCR > By, then

> MINMCR

A —niF| +noFy
n—mni+no

> B

In all of the above computations, if we take into account final SAT sessions that are currently
labelled MCR, then the numerator will increase.

Suppose MINMCR > Lg1; then ny = 0. Assuming Bj1 < Lg1, we have

An-:-in;fé > B;1; and An-:_in;fb < Lgi

Thus, the residual level R is greater than min{B;;;, MINMCR}.

The above arguments also show that if the current 7 = MINMCR, then at the end of the
phase, the protocol will execute another phase in which all sessions with the M CR value equal to
7 are labelled UNSAT. The residual level R after this phase can also be seen to be greater than
min{Bj+1, MINMCR at the end of next phase} by applying the above arguments.

From the above arguments, we also note that R remains at most L4 1. The terminating scenario
is when the threshold becomes equal to the maz{MCR;/, B,_1}, where MCR is the largest MCR
level below Lgyi. Then, using arguments similar to above, we can show that the threshold 7
becomes equal to L1 in at most two additional round-trip time. Once this happens, all sessions
will be correctly labelled and will get their max-min share. Thus, si; becomes steady at Ly
and hence stable.

Thus, if we are in Case 2, then, in at most O(g) round-trip time, the threshold will become
Ly 1. In the phase that follows, every session that passes through this switch is correctly labelled
and also gets its max-min share; thus s;; becomes stable. O

15

