later than when its ending position is scanned. However, we can change our algorithm so that it
finds patterns according to their ending positions, thus making the search on-line. Notice that the
internal nodes of the suffix tree Tp, and their suffix links make a tree T. We partition the tree
T into a forest of trees by deleting (v, S L(v)) for all marked nodes v, and maintain the forest by
using the dynamic trees. Then when an occurrence of a pattern p is found in the text, all patterns
that are suffixes of p can be found by going up the tree T as in the procedure FINDALL. The time
complexities of insertion, deletion, and search remain the same.
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As for the transformation of Fp, , into Fp,, we use the procedure FTD which deletes a node

1
from the forest as soon as it is passed to it by STD. FTD also takes appropriate action when STD
unmarks a node in the suffix tree, not necessarily to be deleted. Assume that u has just been passed

to FTD. Let v = parent(u).

procedure FTD(suffix tree node u)

A. Case u is a leaf: cut(@). Since u is a leaf in the suffix tree, @ is a leaf in the forest of trees.
Cutting the edge (9, %) removes @ from the forest.

B. Case uis an internal node, unmarked but not deleted: link(9,%). u has been unmarked because
the pattern L(u) is not anymore in the dictionary. Therefore, L(w) such that & = root(?) is
the longest pattern that is a prefix of L(y) for all § in the tree rooted at @, implying that @
and all of its descendants in the forest must be descendants of root(?).

C. Case u is an internal node, which has been deleted. Let ¢ be the only child of u in the suffix
tree (a leaf is deleted before its parent): cut(@); cut(§); link(?,§). In the suffix tree, the edges
(v,u) and (u, ¢) have been transformed into (v, ¢). The link and cut operations involving u, o

and § perform the same change in the forest of trees.
Lemma 8. Each node passed to FTD is correctly removed from the forest in O(log|D;_1|) time.

Proof. The correctness comes from the discussion in the presentation of FTD. As for the time
analysis, we have a constant number of cases, each consisting of a constant number of link, and
cut operations. Each of those operations takes the claimed time bound since we are using Sleator
and Tarjan’s dynamic trees [ST83] to maintain our forest and the number of nodes in the forest is
at most O(|D;_1|) (as many as the nodes in the suffix tree when the deletion operation is started).
0

Theorem 4. The deletion of a pattern of length m in the dictionary at time ¢ requires

O(mlog|D;_1]|) time in the worst case.

Proof. By Lemma 7 the deletion of a pattern of length m in the suffix tree can be done in O(m)
time. Moreover, at most 2m new nodes are deleted, and at most one node is unmarked and not
deleted. Each of those nodes is placed into the forest in O(log|D;_1|) time by Lemma 7. [J

7. Conclusion

The time complexity of the search is slightly better than that stated in Theorem 2. Assume
that the procedure FINDALL performed the root(%) operation k times. Since the trees in which
root(4) is performed are disjoint, the time for FINDALL is O(logd; + - - - + log dy), where d,’s are
tree sizes. Since dj + --- + di < |D;l, the time is O(klog(|D;|/k)) by the concavity of the log
function. For the whole text, the sum of tree sizes involved in root(@) is bounded by n|D;|. Thus
if tocc > m, the time for the search is bounded by O(tocclog(n|D;|/tocc)). Therefore, the search
takes O(max(n, tocc)logmin(|D;|, n|D;|/tocc)) time.

Our search discovers patterns according to their starting positions in the text (longest pattern

first). Thus the search is not on-line, since a pattern that is a prefix of another will be reported
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modifying Fp, , accordingly. Again we use two interleaved procedures, STD and FTD, that delete

1
nodes from the suffix tree and the forest, respectively.

We delete the suffixes of p,;$; from Tp,_,
k-th suffix is deleted, we first find the locus u of the suffix and use the procedure STD to actually

remove nodes from the suffix tree. Let v = parent(u).

one at a time from longest to shortest. When the

procedure STD(suffix tree node v)

A. Case v is the root: delete u. If there remains any pattern in the dictionary after deleting the
current pattern, there are at least two children of the root. If u is the only leaf in the suffix
tree, this operation will leave the root only, which is the initial state of the suffix tree.

B. Case v is not the root. There are two subcases.

B1l. v has more than two children: delete u. After deleting u, v still has at least two children.
B2. v has exactly two children: (let w be the sibling of u) delete u; delete v; make w be the

child of parent(v) and assign to this edge as label the concatenation of labels on the edges

(parent(v),v), (v, w).

The discussion in STD shows that the right nodes are removed from the suffix tree when the
k-th suffix of p;$; is deleted. However, in order to prove that the resulting tree is still a suffix tree,
we need to show that none of the nodes removed from the suffix tree has a suffix link pointing to
it. Let a$; be the k-th suffix of p;$;. We maintain an invariant: At the beginning of the k-th
step, the tree is the suffix tree for the string S = ---p;_1$;_1a$;p;+18;+1 - - -. The invariant holds
initially. At the k-th step we delete the suffix a$; from the suffix tree. We delete its locus u; and
in case B2 also its parent vy. Let 3 = L(vy).

Lemma 6. If we delete vy, then there is no suffix link pointing to it.

Proof. Assume that an internal node z has its suffix link pointing to v;. Since v; has exactly two
children, 3 appears in the string S as a prefix of Ba; or Ba, for some characters a;,a,. Since ug,
a child of vg, is a leaf, one of Sa; and Ba, (say Sa;) has only one occurrence; i.e., Ba; is a prefix
of a$;.

By the definition of suffix links, the internal node z is the locus of b3 for b € ¥. z must have
exactly two children, otherwise v would have more than two children. Since the only occurrence
of Bay in Sis ---$;_1Bay - - -, it cannot be an occurrence of b3. Therefore, b3 can appear only as a

prefix of bBa,, which implies that z cannot be an internal node. [

Lemma 7. Tp,_, is transformed into Tp, in O(|p;|) time, and at most O(|p;|) nodes are deleted

1
from the suffix tree.

Proof. The correctness comes from the discussion in STD and Lemma 6. Since each call to STD
takes constant time, |p;| + 1 calls to STD amount to O(|p;|) time. The unmarking of suffix tree
nodes is simply the reverse of the marking. We need to find the loci of the suffixes of p;$;, which
can be done by searching the suffix tree with the text p;$;. Recall, however, that searching takes
O(|pj|) time. O
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A. Case u is a leaf in the suffix tree: newnode(w); link(9,4). © is already in the forest since the
parent of a leaf is created before the leaf in the suffix tree.

B. Case u is marked, but not a new node: cut(w). % was not the root of any tree in the forest
since u was not marked in the suffix tree. After the marking of u, & must become the root of
the tree consisting of all its descendants in the forest because L(u) is now a pattern, and for
each node w such that w is descendant of @, L(u) is the longest pattern that is prefix of L(w).

C. u is a new internal node: newnode(). An edge (v, w) in the suffix tree has been transformed
into two edges (v, u) and (u,w). Notice that ¥ and % and the corresponding edge, if w is not
marked, are already in the forest. We have a few subcases.

C1. Subcase u not marked and root(9) = root(w): cut(w); link(v,a); link(d,w). If o and
w are in the same tree in the forest, then @ must also be in that tree (L(g) such that
¢ = root(?) is the longest pattern that is a prefix of L(u)). Thus we must transform (9, W)
into (v,4) and (@, w).

C2. Subcase u not marked and root(v) # root(w): link(d,%). Since ¥ and @ are not in the
same tree in the forest, root(w) = w (there is no other path in the suffix tree between v
and w, except (v,w)) and, by definition, w is marked since it is not the root of the suffix
tree. Since u is not marked, % cannot be the root of a tree, therefore it must be in the
same tree as 9.

C3. Subcase u marked and root(9) = root(w): cut(w); link(d,w). The correctness of this
operation is analogous to Case B, the only difference being that we have to disconnect w,
rather than u, from v.

C4. Subcase u marked and root(?) # root(w): Do nothing. Again, w is marked and since u is

also marked, @ cannot be connected to either ¢ or w, so it forms a tree of its own.
Lemma 5. Each node passed to FTI is correctly placed into the forest in O(log|D;|) time.

Proof. The correctness comes from the discussion in the presentation of FTI. As for the time
analysis, we have a constant number of cases, each consisting of a constant number of link, cut,
root and newnode operations. Each of those operations takes the claimed time bound since we are
using Sleator and Tarjan’s dynamic trees [ST83] to maintain our forest. The number of nodes in

the forest is O(|D;|) (as many as the nodes in the suffix tree when the insertion is completed). [

Theorem 3. The insertion of a pattern of length m into the dictionary at time 7 requires

O(mlog|D;|) time in the worst case.

Proof. By Lemma 4 the insertion of a pattern of length m into the suffix tree can be done in O(m)
time. At most 2m new nodes are created, and there is at most one node that is marked, but not a

new node. Each of those nodes is placed into the forest in O(log|D;|) time by Lemma 5. [

6. Deletion Algorithm

We delete p; from D;_; = {p1,:*,ps}. By Lemma 2 this can be done by transforming Tp,_,
into Tp, for DS; = p1$1---pj—18;-1Pj+18 41 - - - P58, (i.e., by deleting all suffixes of p;$;), and by
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Now we find all occurrences of the patterns in the text by calling SEARCH and FINDALL for

each position of the text.

Theorem 2. All occurrences of the patterns of dictionary D; in a text of length n are found in

O((n + tocc)log|D;|) time, where tocc is the total number of such occurrences.

Proof. We make n calls to SEARCH and FINDALL. During each call, SEARCH computes h;.
The correctness of SEARCH is analogous to that of STI in Section 2.1. By Lemma 3 FINDALL
correctly reports all occurrences of patterns that are prefixes of h;.

The time analysis of SEARCH is again analogous to that of STI. Thus SEARCH takes a total,
over all calls, of O(n) time. By Lemma 3, each call to FINDALL takes O((occ; + 1)log|D;|) time.
The sum of such times, over all calls, is bounded by O((n + tocc)log|D;|). [

5. Insertion Algorithm

We insert p; into D;,_y = {p1,---,ps}. By Lemma 2, this can be done by transforming Tp,_,
into Tp, for DS; = DS;_1p;$; (i-e., by inserting all suffixes of p;$;), and by modifying Fp,_,
accordingly. We use two interleaved procedures that carry out the modifications of the suffix tree
(procedure STT slightly modified) and of the forest (procedure FTI), respectively. STT is modified
so that it passes a newly created node immediately to FTI. It also marks nodes as described
below and passes such nodes to FTI immediately after its marking. We analyze both procedures
independently, since the slowest of the two gives the time bound of the insertion algorithm.

We insert the suffixes of p;$; into Tp, , one at a time from longest to shortest. For each

1
insertion of the suffixes we use STI. Since the insertion takes place after the last character $, in
DS, 1, we must provide the locus of head|ps;, ,| in Tp,_,. Since $, does not match anything,
the locus of head|ps,_,| is the root of the suffix tree. Notice also that Tp,_, trivially satisfies the
invariant of STI.

We mark suffix tree nodes as follows.

1. After the suffix p;$; is inserted: If there is a node v (not necessarily new) such that L(v) = p;,
mark v.
2. After any other suffix a$; is inserted: If there is a new node v such that L(v) = a and a is a

pattern, mark v.
Since each marking takes constant time, we have the following lemma.

Lemma 4. Tp, , is transformed into Tp, in O(|p;|) time, and at most O(|p;|) new nodes are

i—1

created.

As for the transformation of Fpp,_, into Fp,, we use the procedure FTI, which inserts a node

1
into the forest as soon as it is passed to it by STI. Assume that u has just been passed to FTI. Let
v = parent(u). We have several cases to consider depending on the relationship between u and the

other nodes in the suffix tree. We will give along with each case a short proof of its correctness.

procedure FTI(suffix tree node u)

11



Cl. If |a| > |ﬁ|, then h; = L(m)ﬁ, since the first character of o — 8 mismatches the current
character of the text as it did in step j — 1. Stop and return (m,ﬁ)
C2. If |a| = |ﬁ|, set y — f. Go to Step D.
D. From the node y, the procedure searches down the suffix tree by scanning the text characters
one by one. When the search falls out of the tree (as it must), the last node visited is the

contracted locus of h;. Return the contracted locus v and 8 = h; — L(v).

SEARCH finds h;, the longest prefix of text[j, n] that appears as a substring in D;. We find

all patterns, if any, that are prefixes of h; as follows.

1. If B is not empty and h; = p, for some r (this happens only when the extended locus of h; is
the leaf w such that L(w) = p,$,), report the occurrence of p,.

2. Now any pattern that is a prefix of A; must have its locus v in the suffix tree Tp,, and v is on
the path from clocus to the root of Tp,. Furthermore, the corresponding node ¥ is a root in a

tree of Fp, by the definition of marked nodes.

The procedure FINDALL in Fig. 1 takes as input (clocus,3) of h; and reports all patterns
that are prefixes of h;.

procedure FINDALL(clocus, 3)
begin
report occurrence in Case 1, if any;
u «— clocus;
while u # root of Tp, do
begin
¥ « root(a);
/* v is a marked node in the suffix tree */
/* if different from the root */
if v # root of Tp, then report occurrence;
u — parent(v);
end
end

Fig. 1. Procedure FINDALL

Lemma 3. Procedure FINDALL correctly finds all patterns in D, that are prefixes of h; in

O((occ; + 1)log|D;|) time, where occ; is the number of such patterns.

Proof. Since all patterns in the dictionary are distinct, the number of marked nodes on the path
from clocus to the root of Tp, is either occ; or occ; — 1 depending on Case 1. Each marked node
corresponds to the root of a tree 7; in the forest, and the parent of a marked node corresponds to a
node in a tree 7; # 7; in the forest. The transition from 7; to 7; is performed via the instruction
v « parent(u). None of the marked nodes are missed because they are found in the order of
decreasing depth.

As for the time analysis, Case 1 takes constant time. The most expensive operation is root(?)

which has a time bound of log |D;|. We execute it at most occ; + 1 times. [J
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$ does not match itself (i.e., § # §). And for each leaf we store the number of different strings of
the node (the same string with different §;’s).

We define the second data structure in terms of Tp,. A node v in Tp, is marked if it is the
locus of p; € D; for some j. Notice that a pattern p; is a substring of another pattern if and only
if p; = L(v) for some internal node v. Thus there is a one to one correspondence between marked
nodes and patterns that are substrings of other patterns in the dictionary. A pattern p; that is not
a substring of other patterns appears only in the leaf w such that L(w) = p;$;.

We partition the suffix tree Tp, into a forest of trees Fp, by deleting edges (parent(v),v) for
all marked node v. The following properties hold for Fp,:

1. For each node v in Tp, there is a corresponding node ¥ in Fp,.

2. v is marked in Tp, if and only if ¥ is the root of some tree in Fp,. (The root of Tp, is an
exception.)

3. ¥ is in the tree with root # in Fp, if and only if, among the marked nodes, L(r) is the longest

pattern that is a prefix of L(v).

We implement Fp, by means of the dynamic trees in [ST83] and we assume that such an
implementation is available at time . Notice that Fp, keeps track of the fact that a given pattern
may be a substring of other patterns (this information will be useful during the search phase).
In the following sections, we show how to efficiently maintain the suffix tree and the forest under

insertion and deletion of patterns and how to use them for string matching.

4. Search Algorithm

Let t[1,n] be a text. We want to find all occurrences of patterns of D; that appear in the text.
We can solve this problem by finding the longest prefix, denoted by hj, of t[j,n|$ that appears as
a substring in D;, for 1 < j < n. Then, we can check which patterns are prefixes of h;.

We find h; in the order of increasing j. In the suffix tree Tp,, the string h; is represented by

a pair (clocus, 3):

1. clocus is the contracted locus of h;.

2. B8 = h; — L(clocus).

Given (clocus,f3) of h;_;, the procedure SEARCH finds (clocus,f) of h; (This procedure
is quite similar to procedure STI.). SEARCH also maintains the current position k of the text

(implicit in the procedure below). Initially, clocus is the root, 8 is empty, and k£ = 1.

procedure SEARCH(clocus, 3)

>

Case clocus is the root: y «— root. Go to Step D.

=

Case clocus is not the root: z «— SL(clocus). Go to Step C.

Q

. By Lemma 1, starting from node z, there is a path that has 3 as prefix. That path is traversed
as follows. Set ﬁ — . Let a be the label of the edge from z to its child f such that the first
characters of a and 3 are equal. If |a| < |8, set 3 — 3 — a and ¢ «— f and repeat the label

selection with the new values of 4 and z until || > |A|.
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e root(v): Return the root of the tree containing v.

o link(w,v): Combine the trees containing v and w by adding the edge (w,v). This operation
assumes that v and w are in different trees and that v is a tree root.

e cut(v): Divide the tree containing v into two trees by deleting the edge (parent(v),v). This

operation assumes that v is not a tree root.

Sleator and Tarjan [ST83] designed a data structure (called dynamic trees) that supports,
among others, the four operations just defined. Each operation can be implemented to take O(log k)

time in the worst case, where k is the number of nodes in the tree involved in the operation.

3. Our Data Structure at Time 7

Let D; = {p1,...,ps} be the dictionary at time ¢. We assume that all patterns in the dictionary
are distinct. We organize D; in two data structures: a suffix tree and a forest of trees. Since
the suffix tree is defined for a string of symbols, we need to represent our dictionary by means
of a single string. Assume that p;,---,p, were inserted into the dictionary in that order. We
could conceivably just build a suffix tree of the string p,ps_1 - - -p1$. Indeed, Weiner’s or Chen and
Seiferas’s algorithm can construct the suffix tree for such a string, even if the patterns must be
processed on-line. Since the procedure STI builds the suffix tree from longest suffix to shortest,
we cannot construct a suffix tree until all the patterns are in the dictionary, and thus the suffix
tree would not be available for text scanning until the dictionary was complete. We overcome this
difficulty by introducing more special characters. That is, we construct the suffix tree for the string

p1$1 - - p,$s, which we denote by DS;.

Lemma 2. The suffix tree T' for DS; = p1 81 -+ - ps$; is isomorphic to the compacted trie 7' for
all suffixes of p; $;, all suffixes of p,$,,..., and all suffixes of p,$,. Furthermore, the two trees are

identical except for the labels of the edges incident to leaves.

Proof. Consider an internal node » in T'. L(u) does not contain any special character §;, since it
is a unique character in DS;. Thus L(u) is a substring of DS, if and only if it is a substring of
p; for some j. This implies that the two trees are isomorphic and the labels of the edges whose
endpoints are both internal nodes are the same. It is easy to see that T has a leaf v such that the
label of edge (parent(v),v) is a$;p;j11$;41---ps$s for a € £* if and only if 7' has a leaf v’ such
that the label of (parent(v'),v’) is a$;. O

Lemma 2 will allow us to insert a pattern p; by inserting all suffixes of p;$; to the suffix tree,
and to delete a pattern p;$; by deleting all suffixes of p;$;. By Lemma 2 the suffix tree depends on
the set of patterns, and not on the order in which patterns were inserted. From now on we refer to
the suffix tree for the string DS, as Tp,.

One disadvantage of using p; $; - - - ps$, is that the alphabet grows as we insert more patterns
into the dictionary. This is a problem since the linear time construction for suffix trees assumes a
finite alphabet, and the $;s would blow up the alphabet to be arbitrarily large. We can avoid this
problem by simulating the special characters by a single special character $: (1) $ is not in X, (2)

8



C. In this step the procedure constructs the suffix link of head; ;. By Lemma 1, starting from
node z, there is a path that has 3 as prefix. That path is traversed as follows. Set ﬁ — .
Let a be the label of the edge from # to its child f such that the first characters of a and ﬁ
are equal. If |a| < |3|, set 3 — B — a and z «— f and repeat the label selection with the new
values of 3 and z until |a| > |3|. This step takes time linear in the number of nodes traversed.
C1. If |a| > |A|, f is the extended locus of head;_; — S[i — 1]. Create an internal node d such

that L(d) = head;_y — S[i —1]. Set SL(v) « d. Create a leaf w such that L(w) = S[¢,m],
as a child of d. Stop and return d as the locus of head;.
C2. If |a| = |ﬁ|, f is the locus of head;_1 — S[i — 1]. Set SL(v) « f; y — f. Go to Step D.

D. In this step, the procedure constructs the locus of head; (notice that head; is not known yet).
By Lemma 1, head; = L(y) - v, for some possibly empty string 4. Therefore, we can start the
search from y. The search is guided by the characters of S[¢,p] — L(y) (of which 7 is prefix)
which are scanned one by one from left to right. When the search falls out of the tree (as it
must, since $ is not in the alphabet), the last node visited is the contracted locus of head;.
Create an internal node v such that L(v) = head;, if one does not exist. Create a leaf w such
that L(w) = S[¢,m], as a child of v. Return v as the locus of head;.

Note that during step ¢ a new leaf and at most one new internal node are created.

Theorem 1. [Mc76] Given a string S[1,m] = a1as - - - @y, —1 8, the suffix tree for S can be correctly
built in O(m) time.

Proof. We call the procedure STI m times to insert suffixes from longest to shortest. At step 1 the
invariant is trivially satisfied. It is also satisfied at the end of each step by Step C of STI, which
also provides a proof that each suffix is correctly inserted into the tree.

As for the time analysis, we have m distinct calls to STI. Each operation in the procedure
takes constant time except for Steps C and D. We now show that the time for Steps C and D takes
also constant time, amortized over all calls.

As for Step D, the number of characters that must be scanned during step ¢ to locate head;
is given by |head;| — |head;_1| + 1. The sum of such terms, taken over all steps is bounded by m,
since head; = head,, is empty.

Let res; be S[i,m]— L(z), the suffix of §[¢, m] starting from node . Notice that for every node
f encountered during Step C, there is a nonempty string a which is contained in res; but not in
res;t+1. Therefore, the number of nodes visited during Step C of step ¢ is at most |res;| — |res;;1].

The total time over all steps is bounded again by m, since res; = m and res,, = 0. [

We remark that Weiner [W73] and Chen and Seiferas [CS84] construct slightly different suffix
trees from shortest suffix of S to longest.
2.2. Dynamic trees

Let F' be a forest of rooted trees, with edges directed away from the root. We are interested in

performing the following operations on nodes and edges of F:

o newnode(v): Create a new node v, which is also the root of a new tree.

7



3. There is a node v in T if and only if L(v) is a prefix of s; for some j.

A compacted trie T' is obtained from T by removing internal nodes that have a single child
and by concatenating the labels. Now the label of an edge in 7" is a nonempty substring of s; for
some j, and it is represented by the starting and ending positions of an occurrence of the substring.
Notice that the size of the trie 7' is O(|s1| 4+ -+ + |ss|), while the size of the compacted trie T’ is
O(r), since there are at most r leaves and each internal node has degree at least two.

Let S[1,m] = ajas - - -a,,—1$ be a string, where the special character § is not in the alphabet
3. The suffiz tree Ts for the string S is a compacted trie for all suffixes of S. The suffix tree
defined by McCreight [Mc76] has one more piece of information:

4. Each internal node u such that L(u) = ac, a a character and a a string, has a suffic link
S L(u) pointing to the node w such that L(w) = « (if a is empty, w is the root of Ts); i.e.,
SL(u) =w.

Notice that since $ is not in the alphabet, all suffixes of S are distinct and each of them
is associated with a leaf of Ts. The suffix tree was proposed by McCreight [Mc76] as a space
efficient alternative to Weiner’s position tree [W73]. McCreight also gives a very elegant linear-
time algorithm for the construction of the suffix tree, of which we present a simplified version. For
a unified treatment of position, suffix trees and related data structures, the reader is referred to
Chen and Seiferas [CS84].

We need some definitions and notations. Given two strings « and 3 such that «a is a prefix of
3, we denote by 3 — a the string obtained by deleting & from 3. The locus of a string a in the
suffix tree T's is the node associated with «, if any. The contracted locus of a is the locus of the
longest prefix of a whose locus exists. The extended locus of a is the locus of the shortest string
that has o as prefix. We define head; to be the longest prefix of 5[z, m] (a suffix of S) which is
also a prefix of S[j, m], for some j < i. Notice that the locus of head; always exists. We need the

following lemma:

Lemma 1. [Mc76] If head;_; = aa for some character a and some (possibly empty) string «, then

a is a prefix of head;.

The algorithm for the construction of the suffix tree for S consists of m steps. At the beginning
of step 7, each suffix S[j,m], j < 4, is in the tree and the algorithm inserts S[z,m| at step i. We
denote by T; the tree at the end of step 7. Initially (step zero), there is only the root node. The
procedure for the insertion of a suffix (referred to as STI) takes as input ¢ (we want to insert
S[i,m]), and it returns the locus of head;. It maintains an invariant: The locus of head; in T; is
the only node that could fail to have a suffix link. Let v be the locus of head;_;.

procedure STI(v, 1)

A. Case v is the root (i.e., head;_; is empty): y «— root. Go to Step D.

B1. Case parent(v) is not the root: z — SL(parent(u)). Let 3 be the label of edge (parent(v),v).
Go to Step C.

B2. Case parent(v) is the root: @ « root; § « head;_; — S[i — 1] (label of edge (parent(v),v)

minus its first character). Go to Step C.



to efficiently represent and update the dictionary and as a finite automaton in the style of the
automata designed by Knuth, Morris and Pratt [KMP77] and Aho and Corasick [AC75] for fast
string matching.

In particular, we show that we can define the suffix tree of a set of patterns so that the tree
is independent of the order of the words in the dictionary. We can use such a tree, which can be
dynamically updated by a modification of McCreight’s algorithm [Mc76], to search a text. However,
such a searching scheme requires the off-the-shelf use of Sleator-Tarjan dynamic trees to maintain
the prefix relation of the prefixes of dictionary words.

Let $ be a special character not in the input alphabet ¥ and that does not match itself.
Assume that D; = {p;1,---,ps} is the dictionary after the i-th insertion/deletion operation. Since
the suffix tree is defined for one string while the dictionary is a set of strings, we have to find a
linear representation of the latter: We use the string ¢ = p;$p2$---p,$ and build the suffix tree
for z. The main advantage of this representation is that the insertion and deletion of p; from the
suffix tree can be done by means of very simple algorithms, dual of each other, in O(|p;|) time.
We also partition the suffix tree into a set of trees to maintain the containment information about
the patterns; i.e., which pattern is a substring of another. Such a collection of trees is dynamically
changed by means of the data structure and algorithm of Sleator and Tarjan [ST83]. We briefly

describe our algorithm and its time performance:

o insert(p, D;_1): pis inserted into the suffix tree and the partition is updated in O(mlog|D;|)
worst case time. The size of our data structure is O(|D;|).

o delete(p, D;_1): pis deleted from the suffix tree and the partition is updated in O(mlog|D;_1])
worst case time. The size of our data structure is O(|D;|).

o search(t,D;): We show how to use the suffix tree as a finite automaton to process the text.
Moreover, through our partition of it into subtrees, we can find all occurrences of patterns in
the text in O((n + tocc) log|D;|) worst case time.

The paper is organized as follows. In Section 2 we review McCreight’s algorithm for the
construction of the suffix tree [Mc76] and the dynamic tree operations of Sleator and Tarjan [ST83].
In the following two sections, we show how to suitably combine those two tools to obtain an elegant

and efficient algorithm for dynamic dictionary matching.

2. Basic Data Structures

We give a detailed outline of suffix tree constructions since we will be modifying this algorithm.
We will use dynamic trees directly and will therefore only outline their properties.

2.1. Suffix tree

A trie T [K73] for a set of strings {s1,-- -, s,} is a rooted tree that satisfies the following conditions:

1. Each edge is labeled with a character, and no two sibling edges have the same label (character).
2. Each node v is associated with a string, denoted by L(v), the one obtained by concatenating

the labels on the path from the root to v.



1. Introduction

String processing algorithms have been an active area of research in computer science for quite
some time. Much of this study has been motivated and has found applications in many diverse
fields ranging from storage and transmission of information [S88], compiler construction technology
[ASU86] to molecular biology [W88|. In recent years, interest in this area has grown even further
due to the computational needs of molecular biology [D88,L88].

We consider the dynamic dictionary matching problem. We are given a set of pattern strings
D = {p1,---,ps} (the dictionary) that can change over time; i.e., we can insert a new pattern
into D or delete a pattern from D. Moreover, given a text string £[1,n], we must be able to find
all occurrences of any pattern of the dictionary in the text. More precisely, let Dy be the empty

dictionary. We are interested in performing any sequence of the following operations:

(1) snsert(p, D;_1): Insert pattern p[l,m] into the dictionary D,_;. D; is the dictionary after the
operation.

(2) delete(p, D;_1): Delete pattern p[1, m] from the dictionary D;_;. D, is the dictionary after
the operation.

(3) search(t,D;): Search text t[1,n| for all occurrences of the patterns of dictionary D;.

Efficient algorithms for this problem have applications to bibliographic database searches and to
molecular biology, as discussed in [AC75,H90].

In its static version (i.e., Do = D is a non-empty set of strings, and no insertion or deletion of
patterns from the dictionary is allowed) this problem is a generalization of the well known string
matching problem: Given a pattern string and a text string, find all occurrences of the pattern in the
text. For the static dictionary matching problem, two algorithms are known: one due to Aho and
Corasick [AC75] (AC for short), which can be seen as a generalization of the Knuth-Morris-Pratt
string matching algorithm [KMP77], and the other one due to Commentz-Walter [C79] (CW for
short), which can be seen as a generalization of the Boyer-Moore algorithm [BM77]. Both AC and
CW have preprocessing phases in which graphs are built from the dictionary D for later use, and
search phases in which text positions are checked in increasing order for occurrences of patterns.
The time complexity of the preprocessing of both algorithms is O(|D|), where |D| denotes the sum
of the lengths of the patterns in D. The time complexity of the AC' search algorithm is O(n + tocc),
where n is the length of the text and focc is the total number of occurrences of patterns in the text,
while that of the CW search algorithm is O(n|D|) in the worst case. For both algorithms, once the
preprocessing is done, we can use the search phase for many texts at no extra penalty in running
time. Unfortunately, if we want to insert or delete a pattern, it seems that there is no better
way than doing the preprocessing all over again, implying that the cost of an insertion/deletion
operation would be linear in the size of the dictionary. Thus neither of the static algorithms can
be extended to deal efficiently with the dynamic version of the problem.

We present an algorithm for dynamic dictionary matching whose time performance per opera-
tion compares well with a dynamization of any of the static algorithms. This work is an extension
of the algorithm and data structures presented in [AF91] and [GGP91]. Moreover, we show how

to use the suffix tree (see [Mc76] for a definition of this data structure) both as a data structure
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Abstract

We consider the dynamic dictionary matching problem. We are given a set of pattern
strings (the dictionary) that can change over time; that is, we can insert a new pattern
into the dictionary or delete a pattern from it. Moreover, given a text string, we must be
able to find all occurrences of any pattern of the dictionary in the text.

Let Dg be the empty dictionary. We present an algorithm that performs any sequence

of the following operations in the given time bounds:

(1) insert(p, D;_1): Insert pattern p[1,m| into the dictionary D;_;. D, is the dictionary
after the operation. The time complexity is O(mlog|D;|).

(2) delete(p, D;—1): Delete pattern p[1, m| from the dictionary D,_;. D, is the dictionary
after the operation. The time complexity is O(mlog|D;_1]).

(3) search(t,D;): Search text t[1,n] for all occurrences of the patterns of dictionary
D;,. The time complexity is O((n + tocc) log|D;|), where tocc is the total number of
occurrences of patterns in the text.
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