The Maximum Agreement Subtree Problem for Binary Trees

Martin Farach*
Rutgers University

Teresa M. Przytyckal
Odense University

Mikkel Thorup?
University of Copenhagen

February 1, 1995

Abstract

We consider the problem of computing the Maximum Agreement Subtree (a maximum
common topological restriction) of two binary labeled trees. We show that the problem
can be solved in O('rz,log3 n) using a novel dynamic programming approach. This improves
on the previous O(nc\/@)—time algorithm. At the heart of our solution is an efficient
algorithm for an independent problem which we call the Maximum Crossing (MC) problem,

a problem similar in flavor to the Heaviest Common Subsequence problem.

1 Introduction

The Maximum Agreement Subtree arises in biology as a measure of consistency between two
evolutionary trees. An evolutionary tree for a species set A is a rooted tree in which the leaves
are uniquely labeled by the species in A, and the internal nodes represent ancestors. There are
many methods for computing evolutionary trees [1, 5, 9, 11, 15, 17]. Not surprisingly, these
various methods do not always give the same answer on the same inputs. Given that there is

no “gold standard” for constructing evolutionary trees, current practice dictates that several

*Department of Computer Science, Rutgers University, Piscataway, NJ 08855, USA. E-mail:

farach@cs.rutgers.edu

'Department of Mathematics and Computer Science, Odense University, Campusve]j 55, 5230 Odense M,
Denmark. E-mail: przytyck@imada.ou.dk. Part of this work was done when this author was visiting DIMACS
institute and a part when visiting the University of Warwick.

*Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Kbh. @, Denmark.
E-mail: mthorup@diku.dk.

different methods be applied to the data. The resulting trees are then compared in order to
arrive at some consensus. One technique for obtaining such a consensus is to compute the
so-called Maximum Agreement Subtree (MAST).

Define a leaf labeled tree, T', on label set L to be a rooted tree with no degree 1 nodes, such
that the leaves of T are uniquely labeled with the elements of L. Thus evolutionary trees are
leaf labeled trees, but we will use this less application specific name to emphasize that leaf
labeled trees are used in many other settings for example to model clustering [4]. The set of
leaf labels of a tree T' is denoted L(T). The size, n, of a tree is defined to be the number of
leaves. Given a leaf labeled tree T' on set L, and given L' C L, then the topological restriction
of T to L', written T|L', is the tree with vertex set {1ca”(a,b)|(a,b) € L' x L'}, where the
arcs are defined such that for all (a,b) € L' x L/, 1call¥(a,b) = 1ca’(a,b). Here 1ca’(z,y)
is the least common ancestor of nodes # and y in T, for any tree 7. Such a tree is uniquely
determined by L'. More operationally, we get T'|L' from T by first removing all nodes without
descendants in B, and then contracting any path of degree 1 nodes to a single edge. Given a
set L' C L(T) the tree T|L' can be computed in O(n) time [6].

Given two leaf labeled trees Ty, 77 on the same set L, the Maximum Agreement Subtree
problem (MAST) is to compute a maximum cardinality subset L’ of L such that To|L' and T;|L’
are isomorphic. (Isomorphism of leaf labeled trees is assumed to preserve the labels.) Finden
and Gordon [10] gave a heuristic method for computing the MAST for two rooted binary
trees. Their algorithm, which has a O(n®) running time, does not, however, guarantee an
optimal solution. Subsequently, Kubicka et al. [16] presented an O(n(%"'e) log7) time algorithm
for the binary MAST problem. The first polynomial time algorithm was given by Steel and
Warnow [18]. (They also considered the unrooted version of the problem (UMAST), a problem
which is also biologically important.) Their algorithm, which we will refer to as SW, is a
dynamic programming approach which runs in O(n?) time on bounded degree unrooted trees
and in O(n*5logn) time on unbounded degree unrooted trees. Moreover, they give a linear
reduction from the rooted to the unrooted case, thus reporting the same bounds for the rooted
case. Subsequently, Farach and Thorup showed an O(nzc\/@) time algorithm for the UMAST
problem [6] and an O(n!®logn) time algorithm for the rooted version of the problem [7].
The latter result is optimal in the sense that it is proved by giving a (slightly non-standard)

reduction to unary weighted bipartite matching [12]. For binary trees, their algorithm runs in

O(ncVI°€™) time.

In practice, evolutionary trees have small degree, and most frequently they are simply
binary trees. Thus the MAST problem for binary trees is of particular interest. In this paper,
we give an O(n log® n) time algorithm for the Maximum Agreement Subtree problem for binary

trees.

As with the SW algorithm, our algorithm uses dynamic programming. The quadratic

cost of the SW algorithm follows from the fact that it computes the local solution to the

MAST problem for every pair of rooted subtrees of the two input trees. All o(n?) dynamic
programming algorithms for the MAST problem must find a sparse subset of significant local
computations to perform. In [7], this was done implicitly by a fairly intricate recursive scheme
specifically designed to give an optimal algorithm for the case of unbounded degrees. As
mentioned above, for binary trees their recursion takes O(nc\/lc’?) time. Our algorithm is
a simple dynamic program tailored to binary trees. A key feature of our algorithm is that
we can identify all the local computations initially before the dynamic program starts. We
are thus able to radically simplify the method for actually computing the needed values, and
therefore we have an algorithm which is both more efficient and much simpler. It solves the
MAST problem for binary trees by performing O(nlog®n) local computations in O(nlog?n)
total time. The technique presented in this paper can quite easily be generalized to give an
O(nx/&log?’ n) time algorithm for degree d bounded trees. However, for unbounded degrees,
the technique of [7] is still preferable.

The main idea is to combine a decomposition of the trees into paths with dynamic pro-
gramming algorithms for two other optimization problems: a variant of the Maximum Weight
Common Subsequence Problem (which, because of the interpretation in terms of bipartite
graphs used in this paper, we call the Maximum Non-Crossing Matching problem) and a prob-
lem that we call the Maximum Crossing problem. The definitions of these two problems are

given later in this section.

The rest of the paper is organized as follows. In the following subsection, we define the
Maximum Non-Crossing Matching and the Maximum Crossing Pair Problems. In the Section 2,
we discuss the Maximum Crossing problem and give an efficient algorithm for solving it. In
Section 3, we give our O(nlog®n)-time algorithm for the Maximum Agreement Subtree for
binary trees. In the concluding remarks, we discuss possible generalizations to any bounded

degree d.

1.1 Definitions of the Maximum Non-Crossing Matching and the Maximum

Crossing Pair Problems

Both problems are defined in the terms of bipartite graphs. Let B = (Io U I, E) be a weighted
bipartite graph, where Iy = {1,...,n0}, I1 = {1,...,n1}, and the weights of edges are non-
negative. Let |E| = m and let n = max(ng,n;). Assume, without loss of generality, that
n < m. The weight of edge (¢, 7) is denoted by w(z, 7). Extend the weight function to any pair
(3,7), where 1 <7 < mg and 1 < j < my by letting w(¢,7) = 0 for all (3,5) ¢ E. An edge (z,5)
dominates (3',7') if ¢ <14’ and 7 < j'. Two pairs (¢,7),(7,j') crossifi <4 and 7 > j' or i > ¢
and j < j'. The crossing between such a pair is proper if i # ¢’ and j # j'.

Nested Maximum Non-Crossing Matching with Cuts. The Mazimum Non-Crossing
Matching (MNCM) problem is: given a weighted bipartite graph B, find a maximum total

weight set of non-crossing edges. In this paper, we use a slightly more general version of the
problem. The generalization goes in two ways. First, we are interesting in finding, for all edges
(3,7), MNCM(3,7), which is defined to be the MNCM of the graph restricted to the edges
that are dominated by (¢,7). We call this version of the problem the Nested Mazimum Non-
Crossing Matching problem (MNCM *). The standard algorithms to solve the MNCM problem
solve, in fact, the nested version of the problem. Our second extension is to assume that the
graph also contains a special type of weighted edges, called cut edges. We are interested in
the Non-Crossing Matching problem, subject to the restriction that if the matching contains a
cut edge (,7) then it cannot contain any edge that dominated by (%,7). We call this problem
the Maximum Non-Crossing Matching problem with Cuts Problem and denote it by MNCM..
Finally, the Nested Maximum Non-Crossing Matching with Cuts (MNCM_") Problem is that
of computing, for all edges (%,), the value MNCM,(t,), which, as before, is defined to be
the MNCM, of the graph restricted to the edges dominated by (z, 7). Let cu#(z, j) denote the
weight of the maximum weight cut edge between 7 and j (if there is no cut edge between 7 and

7, set cut(<,7) = 0).

The MNCM,* problem can be solved in O(n?) time by dynamic programming using the

following recurrence:

0 fori<Oorj<o
MNCM.(i—1,7)
MNCM,(i,j) = A MNCM,(i,j — 1) . (1)
max otherwise
MNCM.(i—1,7 - 1) +w(s,j)
cut(t,7)

In the case of sparse graphs, the O(mlogn) time (or O(mloglogn)-time using integer
priority queue operations of [14]) algorithm for MNCM [13] extends trivially to the MNCM_*

problem.

Nested Maximum Crossing problem. Consider a pair (¢,), where 0 < ¢ < ng, 0 < j < n;.
We say the crossing between eq, e3 ts dominated by (i, j) if e; and ey cross properly and both
of them are dominated by (¢,7). The Maximum Crossing (MC) problem is that of finding
the maximum total weight pair of crossing edges. As in the case of Maximum Non-Crossing
Matching, we are interested in the “nested” version of the problem (MC *). Namely, for any
(¢,7) where ¢ € Iy, 7 € I; compute MC(3,7), which is defined to be the MC of the graph
restricted to the edges that are dominated by (7, 7).

The MC * problem can also be solved in O(n?) time by dynamic programming, based on

the following recurrence:

0 fori=0o0orj=0
MC(i—-1,3
MC(i,5) = i —1,4) . (2)
max | MC(i,7 - 1) otherwise

max{w(?, j)|¢’ < i} + max{w(s,7)|j’' < j}

In this paper, we give an O(mlogn)-time algorithm for the MC * problem. In fact, we need

to solve a slightly more general problem:

The Red-Green Crossing problem. Let B be a bipartite whose edges are colored with
two colors: red and green. Order the set of edges, E, by lexicographic order. (We represent
the edges as pairs such that the endpoint that belongs to Ip is the first element of a pair.) A
red-green crossing is a crossing between a red edge and a green edge such that the green edge
is lexicographically larger than the red edge. Our goal is to compute the solution to the nested
version of the following problem: find the maximum weight red-green crossing. We refer to
this problem as to the Maximum Red-Green Crossing problem and abbreviate it by MRGC *.
The algorithm for MRGC * will be used in our algorithm for the Maximum Agreement Subtree

problem.

The MC * problem can be reduced to the colored version by representing each edge as a

pair of edges of the same weight and different colors.

2 The algorithm for the Nested Maximum Red-Green Cross-

ing problem

Without loss of generality, we assume that the degree of every I3 node in the graph B is one.
For assume that a node ¢ has degree d and is adjacent to (j,,,...,7r,). Then we obtain an
equivalent problem by replacing ¢ with d nodes i1, ...4g of degree one such that i is adjacent
to jr, and w(ig, jr,) = w(z, jr,)

In the algorithm, we process the edges of B in lexicographic order. For each processed edge,
e, we compute MRG(C(e) and store information about the edge e and about some crossings
relevant for computing MRGC values for future edges. We store the information in a balanced
ordered rooted binary tree T with n leaves. The i*® leaf of T (in the left-to-right order) is
vertex % of the set I;. Thus T is a binary search tree over I;. We say an edge (z,7) € Io x I1 is
local to a vertex v of T if 7 is a descendant of v. Information will be stored in some attributes

— called g(v),r(v), and z(v) — of the vertices v in 7.

We will typically access the information in 7' by following a path from a node to the root.
In addition to the standard path, we will use what we call the left fringe and the right fringe.
The left fringe of v in tree T is the sequence of nodes that are left children of the nodes on the

path from v to the root but which do not belong to the path itself. Thus the leaves descending
from vertices in the left fringe of a leaf v are exactly the leaves that are smaller than v. The
right fringe of v is defined symmetrically. For any node attribute a and node v of T' we define
maz,(v) (resp. maz_left,(v)) to be the maximum value of a(u) over all nodes u on the path

(resp. left fringe) from v to the root.

The main idea is to store in the tree 7' enough information to be able to compute quickly

a derived attribute pair(v), defined as follows on the nodes of the tree T

For each vertex v define pair(v) to be the weight of a maximum weight red-green crossing
(e1, e2) among the edges processed so far such that e; is a red edge local to v. The importance

of the function pair is explained in the following lemma:
Lemma 2.1 If (3,7) is the next edge to be processed by the algorithm then

MRGC(i, j) = maz_leftyg;r(5)-

Proof: Assume that the maximum total weight crossing dominated by (¢,7) is the crossing
between edges e; and e;. Then both e; must be local to some node that belongs to the left
fringe of 7. Thus MRG((3,7) < mam_leﬂpair(]’).

Assume now that e; = (%1, 71) and e3 = (42, j2) is the pair that realizes the crossing reported
in maz_leftpair(j). Without loss of generality, let e; be a red edge local to some node v on
the left fringe of 7 and e; be a lexicographically larger green edge. Since (¢,) is the next edge
to be processed, we have that i;,i3 < ¢. Since e; is local to some node v on the left fringe
of 7, we have that j; < j, and thus e; is dominated by (z,7). Since ey crosses e; and ey is
lexicographically larger than e;, we have j» < 71 < j and thus e, is also dominated by (%, 7).
Therefore MRGC(i,j) > maz_left,q;,(j) and the lemma follows. O

In order to be able to compute values of the function pair, for every node v we will make

the attributes z(v), r(v), and g(v) satisfy the following invariants:

I1: mazy(v) is the weight of heaviest green edge e such that

e e is lexicographically larger than all the red edges local to v, and

o e crosses all these red edges.
I2: r(v) is the weight of a maximum red edge local to v.
I3: z(v) is the maximum weight red-green crossing between any pair of edges local to v.
The invariants give us the following relationship to our previous derived attribute pair:
Lemma 2.2 If the invariants I11-13 are satisfied,

pair(v) = max{z(v), maz,(v) + r(v)}.

Proof: Note that, by I1 and 12, mazg(v) + 7(v) reports the maximal crossing between a red
edge e that is local to v and a green edge that is lexicographically larger than e and which is

not local to v. By I3, z(v) is the maximum weight red-green crossing local to v. O

To update attributes along the paths of the tree T" we use the following operations.

update, update_right. Given a value z, a leaf j, and an attribute a, procedure update,(z,j)
(update_right,(z, 7)) assigns, for every node u on the path from j (resp. the right fringe

of j to the root), a(u)«—maz{a(u),z}.

propagate_down_left: Given a leaf j, propagate_down_left,(7), assigns, for every node u on the

left fringe of j, a(u)«—maz,(u).

propagate_up: Given a leaf j and an attribute a, procedure propagate_up,(7) changes the value
of the attribute a of every node, u, on the path from j to the root to be the maximum

value of a on the subpath from j to .

cleary: This procedure clears the path from j to the root by assigning zero to all g attributes
on that path without changing the value of mazy(7) for any other node in the tree. This
is done by pushing the values on the path from j down to the left and right fringes before

setting them to zero.

algorithm MRGC(B);
1. Construct tree T and initialize all its attributes to zero
2. for each edge (7,7) of weight w in lexicographic order do

2.1 propagate_down left (35);

2.2 MRGC(i, j)«—maz_leftmaz(zrtq)(7)

2.3 if (4, 7) is green then
2.3.1. update_right (w,)
2.3.2. for every node v on the right fringe of j do

z(parent(v))—— max{z(parent(v)),w + r(v)}

2.3.3. propagate_up,(7)

2.4 else

2.4.2. update,(w, j)
2.4.2. cleary(7)

Lemma 2.3 The algorithm MRGC correctly computes the value of MRGC(e), for every edge e
of the graph B, provided the degree of each vertex in I is one. The complexity of the algorithm
is O(mlogn).

Proof: By Lemma 2.1 and Lemma 2.2, all we need to show is that points I1-I3 are the invariants
of the algorithm. Initially all attributes are initialized to zero, thus the invariants are satisfied.
Assume that the invariants are satisfied before processing of the edge (4,7). Let (z,7) be
the next processed edge. Invariant I1 is guaranteed by steps 2.3.1 and 2.4.2. Invariant 12 is
guaranteed by step 2.4.2. Invariant 13 is guaranteed by steps 2.3.1-2.3.2. To see the last fact,
note that since the edges are considered in lexicographic order, a new red-green crossings can
be introduced only together with a new green edge. If such a new edge creates a crossing which
is local to a node v and is bigger than the crossing currently reported in z(v), then it could be

created in one of the two ways:

- the new crossing is also local to one of the children of v; then #(v) is updated in step 2.3.2,

or

- it is obtained by crossing the new edge with the maximum local green edge of the right child
of v, provided this child is on the fringe of j. This type of crossings is tested for in step
2.3.1.

Each iteration takes O(logn) time, thus the cost of the algorithm MRGCis O(mlogn). O

In particular, we can now conclude:

Theorem 2.4 Given a bipartite weighted graph, the MRGC * problem can be solved in
O(mlogn) time.

3 The algorithm for the Maximum Agreement Subtree prob-

lem

Fix the two trees Tp, T; for which we want to solve the maximum agreement subtree problem.
For any graph G = (V, E), let V(G) = V. For any subtree T’ of a rooted tree T, let 7(T")
be the node in 7' of minimum depth. For all (vg,v1) € V(To) x V(T1), let MAST(vo,v1)
denote the MAST of the subtrees rooted respectively at vg and v;. Here the subtrees are
understood to be topologically restricted to the intersection of their label sets. More formally,
MAST(vo,v1) = MAST(To|B,T1|B) where B = L(vg) N L(v;), and where L(v) is the label set

descending from v.

The SW algorithm [18] is a dynamic programming approach that computes the
MAST(vo,v1) for all O(n?) pairs (vo,v1) € V(To) X V(T1). We will only compute MAST(vo,v1)
for nlog?n of these pairs, but then we will pay an factor O(logn) for data structures related
to the MCP and MNCM problems. Thus, we will replace the ®(n?) bound from the SW
algorithm by an O(nlog®n) bound.

For each internal vertex v in T; (¢ = 0, 1), let the center child, denoted cntr(v) be the node
with the maximum number of descending leaves, and let the side child, denoted side(v) be the
other child, with ties broken arbitrarily. Correspondingly, call the arc (z, cnir(z)) a center
arc, and (z,side(z)) a side arc. By a center path we mean a maximum path using center
arcs. Let < order the center paths in each tree following the preordering of the roots of the
center paths. Also, let < be the corresponding lexicographic ordering of the center path pairs
(Po, P1) where P; is a center path in 7;. We will process the center path pairs, computing
certain MAST-values in the order determined by <. We will use the recursive formula below,
which is a simple reformulation of the one used in the SW algorithm [18]. For technical reasons,
for any leaf v, we define side(v) = cnitr(v) = L, where L is a special “vertex” not belonging to
any tree.
0if 2o = L or z; = L. Otherwise:

[a)1if (zg,2,) is an interesting leaf pair.
MAST(zo,21) — b)MAST(zo, cntr(z1)), MAST(cntr(:co),':cl) |
max ¢ ¢)MAST(cntr(zg), cnt(z1)) + MAST(side(xo), side(z1))
d)MAST(side(zo), 1), MAST(zo, side(z1))
e) MAST(side(zo), cntr(z1)) + MAST(cntr(zo), side(z1))

(3)

o

\

The underlining indicate vertex pairs belonging center path pairs preceding that of (2o, z1) in
<. To see the relationship with the previous recurrence formulas 1 and 2, think of cnir(z;) as

z; — 1. In the following, we shall see that we only need to compute relatively few MAST-values.

Interesting and significant vertex pairs. For each internal vertex v in Tj;,72 = 0,1, let
L*(v) denote the label set descending from side(v). For leaves v, L*(v) = L(v). Note that if »
is the root of a center path P, then {L°(v)|v € V(P)} is a partitioning of L(r).

A vertex pair (vg,v1) € V(To) x V(T1) is interesting if L*(vo) N L*(v,) # 0.

Lemma 3.1 The are at most nlog? n interesting vertez pairs, and they can be identified in
time O(nlog?n).
Proof: Any interesting vertex pair is witnessed by a label, and since the path from a leaf to

the root pass at most logn side arcs, each of the n labels can witness at most log? n interesting

pairs. O

A center path pair (Py, P1) is interesting if it contains an interesting vertex pair, or equivalently,
if L(r(Pp))NL(r(P;))) # 0. The size of (Py, P1), denoted || Py, Pi ||, is the number of interesting
vertex pairs (vo,v1) € V(Fo) X V(P1). Thus, by Lemma 3.1, 3% p, py || Po, P1]| < nlog?n. A

vertex pair (vp, v1) in an interesting center path pair (Py, P1) is said to be significant if either

(1) (wo,v1) is interesting,

(ii) (vo,v1) = (r(Po),r(P1)), or

(iii) wo or vy is the root of its center path and the other node belongs to an interesting vertex

pair.

In relation to recurrence 3, note the following relationship between interesting and significant

vertex pairs:

Lemma 3.2 If (vg,v1) € V(Po) x V(P1) s interesting then (vo, side(v1)), (side(vo),v1), and
(stde(vg), stde(v1)) are all significant, and belong to center path pairs preceding (Po, P1) in <.

Proof: For i = 0,1, let P; be the path containing v;, and let @; be the path with root
side(v;). By definition (vo, v1) is interesting because L*(vp)NL*(v;) # 0. Thus, v is interesting
with respect to some vertex in @1, so vg is interesting in (Po,Q1), so (v, side(v1)) satisfies
(iii) relative to (Pp, Q1) < (Po,P1). The case of (side(vg),v1) is symmetric. Concerning
(side(vo), side(v1)) we note that (side(vg), side(v1)) satisfies (ii) relative to (Qo, Q1) < (Po, P1).
O

In our dynamic program we want to compute the MAST-value for all significant vertex pairs.
These MAST values are stored in a binary search tree, thus they can be accessed in O(logn)
time. Note that there are at most 3 - || Py, P1|| + 1 significant pairs in (Pp, P1). Uninteresting
center path pairs have no significant vertex pairs, so by Lemma 3.1, in total there are only
O(nlog®n) significant vertex pairs. Also note that in O(nlog?n) time, we can identify all
significant vertex pairs for all interesting center path pairs. We will compute the significant
vertex pairs for one interesting path pair at a time, following the lexicographic ordering given

by <. More specifically we wish show:

Proposition 3.3 Let (Py, P;) be an interesting center path pair. Given the MAST-values for
all significant pairs belonging to center path pairs (Qo,Q1) < (Po, P1), we can compute the
MAST-values for all significant pairs in (Po, P1) in O(||Py, Py||logn) time.

Proof: The proof of the proposition essentially covers the rest of this section. Fix the in-
teresting center path pair (P, P;), and assume we have computed the MAST-values for all
significant pairs belonging to center path pairs (Qo,Q1) < (Po, P1). Thus, by Lemma 3.2,
if (vo,v1) € V(FPp) x V(P1) is interesting, then MAST(vo, side(v1)), MAST(side(vo),v1), and
MAST(side(vo), side(vy)) are all known.

Modifying the recurrence formula. In order to relate to the MNCM and MC'recurrences 1

and 2, we enumerate the vertices in each P; from 0 to |P;| — 1 starting from the leaf. Thus

10

z — 1 replaces cnir(z), and we set L = —1. Now, rewrite recurrence 3 as:

0if z¢g = —1 or z; = —1. Otherwise:

a)l if (zo, 1) is an interesting leaf pair.
b)MAST(xg, 1 — 1), MAST(zo — 1,21)

c)MAST(zo — 1,21 — 1) + MAST(side(o), side(z1))

max if (zg, 1) is interesting.

MAST(:Eo,IEl) = < (4)

d)cut (zg,z1) if (2o, 1) is interesting.

e)cut’(zo, 1)

if (zg + 1,21 + 1) is interesting or (zo, z1) is significant.

where cut’ and cut” replace the expressions in the last two lines of (3) and are explained below.
Note that our condition in ¢) of (2o, 1) being interesting is valid in the sense that otherwise
MAST(side(xo), side(z1)) = 0 and then c) follows by applying b) twice. Set m = || Py, Py||,
that is, let m be the number of interesting vertex pairs in (Pp, P1). Recall that the number of
significant vertex pairs is bounded by 3m+1 = O(m). Assuming appropriate definitions of cut’
and cut”’, we now have an MNCM;, problem with O(m) cut-edges corresponding to a), d), and
e), O(m) normal “matching” edges corresponding to ¢), and O(m) “query” edges (zq, 1) for
which we want to know MNCM(z,z1); namely the significant vertex pairs. At the moment,
we may have some vertices that are not incident with any of these edges. However, from the
significant edges, we can identify all the matching edges, and clearly, in O(mlogn) time, we
can sort the involved vertices so as to skip the superfluous vertices. Afterwards, we have an
O(m) sized MNCM; problem, which we know that we can solve in time O(mlogn). This time
bound also includes the O(m) accesses of O(logn) time to look up needed MAST values.

The cut edges. We define
cul'(zg,z1) = max{MAST(side(zo),z1), MAST(zo, side(z1)}. (5)

The reason why in 3d) we only need to consider the case where (2o, 1) are interesting is that
otherwise, for {z,7} = {0,1}, MAST(side(z;), z;) = MAST(side(z;),z;—1) < MAST(z;, z;—1).

In other words, if (2o, 1) is not interesting then b) overrules d).

The value cut’(zg, z1) replaces the last line in the recurrence (3). Unfortunately, there may
be (n?) non-zero values of the sums MAST(side(zo),z1 — 1) + MAST(zo — 1, side(z1)). We
define cut” as follows:

b)cut'(zo — 1, 21), cul’(zo, 21 — 1)
cut’(zg,z1) = maxq e)max{MAST(side(zo),z!) |z} < z; and (zo, z}) is interesting} (6)
+ max{ MAST(zy, side(z1)) | 5 < zo and (zg, 1) is interesting}
To see that this definition of cut” is correct, first recall that if (2o, 1) is not interesting, for

{i,3} = {0,1}, MAST(side(z;), z;) = MAST(side(z;),z; — 1). Hence

MAST(side(z;), z; — 1) = max{ MAST(side(zo),) | z7 < 27 and (@0, z}) is interesting}.

11

Thus 6e) is equal to 3e).

The point in 6b) is that it can substitute for 3b). More precisely, all calls to 3b) immediately
preceding a call to 3e) are translated into calls to 6b)—any other calls to 3b) are replaced by
calls to 4b). Thus, our entry (o, z1) into 4e) is either a start query meaning that (zo,z1) is
significant, or it is following a call to c) implying that (2o + 1,21 + 1) is interesting. Thus we

may conclude that recurrence formulas 4,5 and 6 are equivalent to recurrence formula 3.

Now, recurrence formula 4 is equivalent to the recurrence 2 of the Nested Red-Green Maxi-
mum Crossing Pair problem (MRGC *). For each interesting pair (zo, 1), we have a green edge
(9,20, 1) with weight MAST(side(zo),z1) and a red edge (7, zo, 1) with weight MAST(zo,
stde(z1)). As before, we note that in O(mlogn) time, we can skip all vertices not incident
with any red or green edges, and afterwards, we have an MRGC * problem is of size O(m).
By Theorem 2.4, this problem can be solved in time O(mlogn). This completes the compu-
tation of the MAST values of all significant vertex pairs in (Py, P;), based on MAST-values of
significant vertex pairs from center path pairs (Qo, Q1) < (Po, P1). Thus follows Proposition
33. 0

In conclusion, we have shown
Theorem 3.4 The MAST problem on two binary trees can be solved in O(nlog®n) time.

Proof: By Lemma 3.1 there are at most nlog?n interesting vertex pairs, and hence at most
nlog? n interesting center path pairs. These are sorted by the lexicographic ordering < in time
O(nlog®n). Processing the path pairs (P, P;) following this ordering, by Proposition 3.3, we
can compute the MAST-values of all significant vertex pairs in (P, P1) in O(|| Py, P1||logn)
time, hence in O(nlog® n) total time. At the end, we can return MAST(r(T,),7(T1)) which by

case (ii) is a significant pair in the center path pair containing both roots. O

4 Concluding remarks

Consider, now, the case of trees with some small degree bound, d. Things become slightly
more complicated in this case. The recurrence for MAST(vg,v;) then involves a weighted
bipartite matching, where the independent sets are the children of vy and vy, and where the
weight function is MAST. Without going into details, in [6, §2] it is shown that we can reduce
these matchings so that in total they contain only O(nlog®n) “interesting edges”. Since the
vertex sets in each matching are of size at most 2d, using the best bound for weighted bipartite
matching [12], we get that the matching work can be done in time O(n+v/dlog® n), which is thus
our bound for computing the MAST of two trees with degree bounded by d. This should be
contrasted with the previous bound of O(n1+°(1) + n\/alog n) from [7]. The n°(1) term hides
an expression which is Q(c\/k’?). Thus our bound of O(n+v/dlog® n) is worse for large d, but

12

better for small values of d, say, if d = polylogn. In particular, our result is superior for the

common case of constant degree trees.

Our nlog® n bound on the number of interesting vertex pairs (Lemma 3.1) generalize natu-
rally to an nlog® n bound for k trees. It would be nice to see this observation used in a general
MAST algorithm for k& trees. It should be noted, however, that the problem fundamentally
changes character for & > 2. In [2] Amir and Keselman showed MAST to be NP-hard for just
3 unbounded degree trees. Nevertheless, using an entirely different approach, they presented
an O(knt! 4 n?9) bound for this problem [2, 3]. We have since improved this bound to
O(kn® + n?) [8]. Thus the suggested generalization of the techniques in this paper would only

be significant for small values of k.

References

[1] R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm for the phylogeny
problem when the number of character states is fixed. Proc. of the 34th IEFEE Annual
Symp. on Foundation of Computer Science, pages 140-147, 1994.

[2] A. Amir and D. Keselman. Maximum agreement subtrees in multiple evolutionary trees.
Proc. of the 35th IEEE Annual Symp. on Foundation of Computer Science, pages 7T58-769,
1994.

[3] A. Amir and D. Keselman. Maximum agreement subtrees in multiple evolutionary trees

- a correction. 1994. Prersonal Communication.

[4] J-P. Barthélemy and A. Guénoche. Trees and Prozimily Representations. Wiley, New
York, 1991.

[6] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary
trees. Algorithmica, (13) 155-179, 1995.

[6] M. Farach and M. Thorup. Fast comparison of evolutionary trees (extended abstract).
Proc. of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 481-488,
1994.

[7] M. Farach and M. Thorup. Sprase dynamic programming for evolutionary tree compar-
ison. Proc. of the 35th IEEE Annual Symp. on Foundation of Computer Science, pages
770-779, 1994.

[8] M. Farach, T.M.Przytycka, and M. Thorup. Agreement of many bounded degree evolu-

tionary trees. manuscript.

[9] J. Felsenstein. Numerical methods for inferring evolutionary trees. The Quarterly Review
of Biology, 57(4), 1982.

13

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

C. R. Finden and A. D. Gordon. Obtaining common pruned trees. Journal of Classifica-
tion, 2:255—276, 1985.

W.M. Fitch and E. Margoliash. The construction of phylogenetic trees. Science, 155:29—
94, 1976.

H. Gabow and R. Tarjan. Faster scaling algorithms for network problems. SIAM Journal
on Computing, 18(5):1013-1036, 1989.

G.Jacobson and K-P. Vo. Heaviest increasing/common subsequence problems. In Pro-

ceedings of the Combinatorial Matching Conferences, 1992.

D.B. Johnson. A priority queue in which initialization and queue operations take
O(loglog D) time. Math. Systems Theory, 15:295-309, 1982.

S. Kannan, E. Lawler, and T. Warnow. Determining the evolutionary tree. Proc. of the
1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 475-484, 1990.

E. Kubicka, G. Kubicki, and F.R. McMorris. An algorithm to find agreement subtrees.
To appear in Journal of Classification, 1992.

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogentic trees. Mol. Biol. Evol., 4:406-424, 1987.

M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement
subtree. Information Processing Letters, 48:77-82, 1993.

14

