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Abstract

Most traditional pattern matching algorithms solve the problem of finding all occurrences
of a given pattern string P in a given text T . Another important paradigm is the dictionary
matching problem. Let D = {P1, ..., Pk} be the dictionary. We seek all locations of dictionary
patterns that appear in a given text T .

Previous dictionary matching algorithms have all involved exact matching of a set of strings.
In this paper, we present an algorithm for the Two Dimensional Dictionary Problem.

The two dimensional dictionary problem is that of finding each occurrence of a set of two di-
mensional patterns in a text. Our algorithm runs in time O(|D| log k) preprocessing, O(|T | log k)
text processing.
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1 Introduction

Traditional Pattern Matching has dealt with the problem of finding all occurrences of a single
pattern in a text (under some definition of the word “occurrence”). The most basic instance of this
problem is the Exact String Matching Problem, i.e. the problem of finding all exact occurrences of
a pattern in a text. This problem has been extensively studied. The earliest linear time algorithms
include [KMP77] and [BM77]. For two dimensional patterns and texts, the first linear time
algorithms for bounded alphabets were given in [Bir77] and [Bak78]. The first linear time algorithm
for the unbounded alphabet case appears in [?].

While the case of a pattern/text pair is of fundamental importance, the single pattern model is
not always appropriate. One would often like to find all occurrences of a set of patterns in a text.
We call such a set of patterns a dictionary. In addition to its theoretical importance, Dictionary
Matching has many practical applications. For example, in computer vision, one is often interested
in matching a template to a picture. In practice, one needs to match an enormous set of templates
against each picture. Clearly one would like an algorithm which is minimally dependent on the size
of the database of templates.

Any pattern matching algorithm can be trivially extended to a set of patterns by matching for each
pattern separately. If a given algorithm runs on a text T and a pattern P in time M(t, p), were t

is the length of T and p the length of P , then the trivial scheme runs on a text T and a dictionary
D = {P1, P2, . . . , Pk} in time

∑
k

i=1 M(t, pi). Throughout the rest of this paper, we will refer to the
size of some object X by its lower case equivalent x. The only exception will be when referring to
dictionaries, in which d =

∑
Pi∈D pi, while k = |D|, the cardinality of the dictionary. In addition,

for alphabet Σ, we will take σP and σD to mean the number of distinct characters that occur in
pattern P or dictionary D respectively. In general, when there is no ambiguity, we will drop the
subscript and simply refer to σ.

In certain setting, however, one can do much better than this brute force approach. Aho and
Corasick [AC75] solved the Static Dictionary Matching problem. Given a dictionary D whose
characters are taken from the alphabet Σ, they preprocess the dictionary in time O(d log σD) and
then process text T in time O(t log σD). The algorithm is for static dictionaries because inserting
or deleting a pattern may require processing the entire dictionary again.

Their complexity is perhaps surprising because the text scanning time is independent of the dictio-
nary size (for finite alphabet). Aho and Corasick reported their complexity in terms of output size.
This is because more than one pattern might match at any given location. They chose to represent
their output as a list at each location of all patterns that match at that location. However, when
dealing with exact matching, one needs simply to output the longest pattern since all information
about shorter patterns is contained implicitly in this representation and can be retrieved in time
linear in the number of matching patterns. We choose this representation since it is computationally
equivalent but the output size is linear.

In [AF91a] and [?], we showed a dynamic dictionary matching algorithm with the following com-
plexities:
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Adding Pattern P : O(p log(d + p))
Deleting Pattern P : O(p log d)
Scanning Text T : O(t log d).

Note that for unbounded alphabets this algorithm matches the complexity of the Aho-Corasick
static algorithm, since σD = O(D).

In this paper we present a two dimensional dictionary matching algorithm that preprocesses the
dictionary in time O(d(log k+log σ) and subsequently finds all appearances of all dictionary patterns
in text T in time O(t(log k + log σ)).

There are two main ideas behind our algorithm. First, we linearize the pattern matrices along
the diagonal to produce a dictionary of strings over an alphabet of subrow/subcolumn pairs. We
analyze the KMP algorithm to show how to apply the automaton technique to our new strings while
preserving the two dimensionality of the underlying problem. We also explore efficient methods of
dynamically inserting new elements into suffix trees.

In section 2, we present a novel algorithm for two dimensional matching. In section 3, we present an
algorithm for two dimensional dictionary matching. We conclude with open problems in section ??.

2 A Two-dimensional Matching Algorithm

For the sake of clarity of exposition, we first present a novel algorithm for matching a single two
dimensional pattern and in the next section show how to generalize to a set of patterns.

We start with definitions. We say that b is a border of x if |b| < |x| and if b is a prefix and a suffix
of x. We set B(x) = |b|, where b is the longest border of x.

Consider the KMP algorithm [KMP77] for exact one dimensional matching. In the preprocessing

stage, the pattern string is used to construct an automaton with the following properties. Each
node, i, representing the ith prefix of P [1, . . . , n], has two links, a forward or success link to node
i + 1 which is traversed if the next character read equals P [i + 1], and a failure link whose value
is B(P [1, . . . , i]). That is, if FL(i) is the failure link from the ith node of the automaton, then
P [1, . . . , FL(i)] = P [i− FL(i) + 1, . . . , i].

KMP showed the following lemma:

Lemma 1 For string X ∈ Σ+ and α ∈ Σ, if X[B(X) + 1] = α, then B(Xα) = B(X) + 1. We will
call this the border extensibility property.

Based on this lemma, they showed how to construct such a KMP automaton in linear time, under
the assumption that letters of the alphabet can be compared in constant time.

In the text scanning stage, the text is scanned linearly, following success or failure links in the
automaton.
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The KMP idea can be directly used for 2-dimensional exact matching. Consider every pattern row
as a single character and construct the KMP automaton of the “linearized” matrix. Now scan the
text down each column considering the subrow of length m starting at each position as the (single)
character to be scanned. If a comparison between rows can be done in constant time, we have a
linear-time exact 2-dimensional algorithm. This idea was used in [Bir77] and [Bak78] to produce
a linear time two dimensional matching algorithm. The same idea was used differently for scaled
matching in [ALV90]. These algorithms rely on the fact that the rows of a matrix are all the same
length. If all the rows are the same length then exactly one of them can match at any given location
of the text. The KMP algorithm only allows for a single forward transition state, thus if more than
one row pattern matches at a text location (e.g. if the row patterns are of different lengths), this
approach breaks down. The issue of non-rectangular pattern matching was addressed in [AF91b].

We propose a different approach. Instead of linearizing the 2-dimensional matrix along one of its
axes, we linearize along the diagonal. Note that when we cut a matrix along the diagonal we divide
the matrix into an upper right half and a lower left half. We construct a new alphabet from the
subrows of the lower left hand corner and their matching subcolumns from the upper right hand
corner. Note that we now have “characters” of different length rows and columns. As noted above,
more than one such character can match at some location, therefore a direct application of the
KMP algorithm will not work. However, we show how to modify the border extensibility property
so that KMP will still work.

2.1 Preprocessing: (Automaton construction)

Convert the matrix M [1, . . . ,m; 1, . . . ,m] into string M ′[1, . . . ,m] as follows. Let c(i) = M [i, . . . , 1; i]
(this is a subcolumn of M in reverse order). Similarly, let r(i) = M [i; i, . . . , 1] (also in reverse order).
We now set M ′[i] = 〈c(i), r(i)〉.

We define the ith prefix of the array M to be P(i) = M [1, . . . , i; 1, . . . , i] and the ith suffix to be
S(i) = M [i, . . . , n; i, . . . , n]. We will use the notational shorthand S(i, j) to mean M [i, . . . , j; i, . . . , j],
that is, the ith prefix of the jth suffix of M . Note that P(i) = S(1, i) and that S(i) = S(i, n).

Recall that for any string X, if X[B(X) + 1] = α then B(Xα) = B(X) + 1. This straightforward
statement about strings raises two issues when we generalize to two dimensions. First note the
following about our new string M ′. M ′[i] consists of a row and column each of length exactly i.
Therefore, when we check in the KMP algorithm if X[B(X) + 1] = α, we note that X[B(X) + 1]
is a character of “size” B(X) + 1 and α is a character of “size” |X| + 1 (since Xα must be a
valid string). But B(X) < |X|, so α is never exactly the same row/column pair as X[B(X) + 1].
However, we need not abandon the border extensibility property and the KMP algorithm. We
define the operator =̇ to replace exact equality.

Let us first consider what is required of the KMP automaton construction when we move on the
diagonals. Suppose that at some stage j of constructing the KMP automaton of M ′, we have
determined that P(i) = S(j − i + 1, j). To see if P(i + 1) = S(j − i + 1, j + 1) we must confirm
that 〈c(i + 1), r(i + 1)〉 = 〈M [j + 1, . . . , j − i + 1; j + 1],M [j + 1; j + 1, . . . , j − i + 1]〉. But
M [j + 1; j + 1, . . . , j − i + 1] is a prefix of r(j + 1) and M [j + 1, . . . , j − i + 1; j + 1] is a prefix of
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c(j + 1). Thus, we define the “equality” relation as follows:

For i ≤ j, we define 〈c(i), r(i)〉=̇〈c(j), r(j)〉 iff c(i) is a prefix of c(j) and r(i) is a prefix of r(j).

As noted above, this relation is not symmetric and is thus not an equality relation at all.

Lemma 2 Given a string M ′ which is the diagonal linearization of a two dimensional matrix
M , then we can construct an automaton to match for M with a linear number of row/column
comparisons.

Proof:

By lemma 1, the KMP construction relies on the border extensibility property. Bye the argument
given above, the relation =̇ preserves the border property in diagonally linearized matrices. We
can therefore use the KMP automaton construction as a black box for building the automaton for
M ′ using a linear number of meta-character comparisons.2

It remains to be shown how to compare the row/column meta-characters efficiently, as well as how
to use the automaton to match against the text.

2.2 Text scanning:

We linearize the given text, T [1, . . . , n; 1, . . . , n] as follows. Construct a set of 2n − 1 strings
T ′

i
[1, . . . , n − |i|], −(n− 1) ≤ i ≤ n− 1, where each T ′

i
corresponds to the diagonal whose column

and row coordinates differ by i, that is, T [c, r] is on the diagonal T ′
c−r. For i = 0, we get the

main diagonal, and for i > 0 (i < 0) we get the diagonals below (above) the main diagonal. Let
mi = max{1, i}. We let T ′

i
[j] = 〈ci(j), ri(j)〉 where

ci(j) = T [mi + j, . . . ,mi; j]

ri(j) = T [mi + j;mi + j, . . . ,mi]

Algorithm 1 2-D matching – scanning the text

Begin

for i←− (n− 1) to n− 1 do
state←0
for j←1 to n− |i| do

if M ′[state + 1]=̇Ti[j]
state←state + 1
if state = m

Found a match
state←FL(state)
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else
while( state > 0 and M ′[state + 1] ˙6=Ti[j])

state←FL(state)

End

Implementation Issues:

Our main concern is making comparisons between subrows or between subcolumns in constant
time. We handle the constant-time comparison differently for the automaton construction and for
the text scanning parts.

Automaton Construction: To compare c(i) with c(j) we do the following. Take each column in
reverse order (that is, from the bottom of the matrix to the top) and concatenate them. Then, in
linear time (times log of the effective alphabet size) construct the suffix tree, Tc (for construction
see e.g. [McC76, Wei73]), of this new string and preprocess the string for Least Common Ancestor
(LCA) queries (see [HT84]). As has been described in many sources, (e.g. [?]), it is now possible to
compare two subcolumns by finding their corresponding leaves in Tc and finding the LCA of those
leaves. The rows are processed analogously to construct the tree Tr. The total preprocessing time
is therefore O(p log σP ).

Text Scanning: Theoretically, we can construct the suffix trees and do the LCA preprocessing for
a concatenation of the text columns and rows together with those of the patterns. The problem is
that then we would need to preprocess the patterns anew for every different input text. For single
pattern matching, this is no problem, since the pattern is smaller than the text. However, when we
have a dictionary of patterns, any particular text may be much smaller than the total size of the
dictionary. We therefore would like to avoid rebuilding the dictionary data structure each time we
need to process some text.

Note that it is possible to insert the text rows and columns into the suffix trees in time O(n2 log σP )
as follows. Weiner [Wei73] (and McCreight [McC76]) showed a construction for the suffix tree of
a string X that runs in O(x log σX) time. The details of the Weiner algorithm are very involved
(and are largely irrelevant to this discussion) and are therefore omitted (see [CS85] for an excellent
treatment of this topic). However, certain details are important for the algorithm presented below.
We therefore give a high level overview of the Weiner algorithm.

Let TX be the suffix tree of the string X. Further, let T≥i be the suffix tree of the substring
xi, . . . , xn. The Weiner algorithm proceeds by taking T≥i and updating it to create T≥i−1. This
step takes amortized O(log σX) time and therefore the construction takes O(x log σX) time.

While the amortized cost is constant, for constant size alphabet, the maximum possible cost for
inserting a new suffix is of the order of the depth of the last inserted node in a tree. We denote the
depth of the last inserted suffix in TX as d(TX). The worst case cost of converting T≥i to T≥i−1

is O(d(T≥i)). Therefore the cost of transforming TX to TY X for strings X and Y is O(y + d(TX)).
Let $ be a symbol that does not appear in X. Then building T$X takes O(x log σX). But since the
suffix $X shares no initial characters with any other suffix of $X, d(T$X ) = 1. Therefore changing

6



T$X to TY $X takes time O(y log σY $X).

The remaining problem is that the LCA preprocessing is not dynamic, that is, we cannot make
LCA queries involving the newly introduced nodes in constant time. However, when we run the
automaton on the text we only make comparisons between text rows (columns) and pattern rows
(columns). We never compare text rows (columns) with each other. We can therefore insert the
text rows and columns into Tc and Tr and whenever we insert a new leaf, we note its closest ancestor
that was a node in the original tree. When making LCA queries, we can make queries about these
ancestor nodes rather than the new leaf itself and still get the same LCA. We conclude:

Theorem 1 Given a pattern P of size m×m = p and a text T of size n× n = t, we can find all
occurrences of the pattern in the text in time:

Preprocessing: O(p log σP ).

Text Scanning: O(t log σP ) .

Proof:

By lemma 2, we can build the matching automaton with a linear number of comparisons. However,
the considerations about show that we can do the comparisons in constant time after we build a
suffix tree in O(p log σP ).

Finally, it is clear that P occurs at T [r, c] iff P ′, the diagonally linearized pattern, occurs at
Tc−r[max{c, r}]. The correctness of the algorithm then follows from this observation and from the
correctness argument for the KMP algorithm in [KMP77].2

3 A Two-dimensional Dictionary Matching Algorithm

Aho and Corasick (henceforth AC) showed in [AC75] that KMP could be modified to match for a set
of patterns rather than a single pattern. In their case, they once again constructed an automaton
against which the text is run. However, their success and failure links where modified as follows.
As before, each node represents some prefix of a pattern. We will let S(n) be the string represented
by node n (we will let S−1 be S’s inverse function, which is obviously only defined over the set of
prefixes of the dictionary patterns). A set of patterns may now share a prefix. Thus each node
may have up to k success links, one for each letter following its string in the set of patterns. We set
GOTO(n, α) to be the node such that S(GOTO(n, α)) = S(n)α. Then GOTO(n, α) is only defined
if S(n)α is a prefix of some dictionary pattern. For example, suppose our dictionary contains the
patterns aaab and aaaca. Then there will be a node n in the automaton such that S(n) = aaa.
That node would have a success link for b and c, that is, GOTO(n, b) and GOTO(n, c) will be
defined.

In order to describe the failure links in an AC automaton, we define the function β as follows. let
a set border b of string X with respect to D be a proper suffix of X that is a prefix of some string
in dictionary D. We set β(X,D) = b, where b is the longest set border of X with respect to D.
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For each node n of the automaton, we set the failure link FL(n) = S−1(β(S(n),D)). The construc-
tion of such an automaton is efficient if we can insure the following property, which was proved
in [AC75]:

Lemma 3 For all nodes n, if GOTO(FL(n), α) is defined and GOTO(n, α) is defined, then
FL(GOTO(n, α)) = GOTO(FL(n), α).

This is correspondingly called the set border extensibility property. Here we have a case that
is analogous to the problem with the border extensibility property in the KMP algorithm. If
GOTO(n, α) is defined then α is of size |S(n)| + 1, but if GOTO(FL(n), α) is defined, then α is
of size |S(FL(n))|+ 1. Once again we know that |S(FL(n))| = |β(n,D)| < |S(n)| so there is no α

for which GOTO will be defined in both cases. For our diagonally linearized patterns, we get the
following lemma.

Lemma 4 If GOTO(n, α) is defined and ∃α′ such that α′=̇α and GOTO(FL(n), α′) is defined,
then FL(GOTO(n, α)) = GOTO(FL(n), α′).

Proof: The correctness follows by the same argument in as in the KMP based algorithm of
section 2 by further noting that since |α′| < |α|, we know that α′ is uniquely defined, i.e. it is the
first |S(FL(n))|+ 1 characters of α.2

Algorithm 2 2-dimensional exact dictionary matching

Begin

[1] Preprocessing:
Construct suffix trees Tc and Tr and preprocess for LCA.
Construct an AC automaton on the linearized patterns.

[2] Text Scanning:
Insert text rows and columns into Tr and Tc respectively.
Scan the linearized text using the AC automaton.
Remove text rows and columns from Tr and Tc. respectively.

End

Implementation Issues:

Constructing an AC automaton (and later using it when scanning the text) involves choosing a
success link at every node. If the alphabet is fixed this can be done in constant time. Otherwise it
will take O(log deg), where deg is the maximum possible outdegree at every automaton node. In
our case deg is at most k since success at a node means traversing a link labeled with a possible
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subrow-subcolumn pair. The size of the next pair is fixed, (hence only one possible per pattern)
and there are k patterns, thus there are at most k possible success links.

We summarize with the following theorem.

Theorem 2 Given a dictionary D = {P1, P2, . . . , Pk} of two dimensional patterns such that Pi is
a pi×pi matrix with entries taken from the set Σ, then it is possible to find, for each location T [i, j]
of a n1 × n2 text T , the largest pattern Pi with matches at that location within the following time
bounds:

Step 1 O(d(log k + log σD)) for dictionary preprocessing.

Step 2 O(t(log k + log σD)) for text scanning.
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