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Abstract

Local features have proven very useful for recognition.

Manifold learning has proven to be a very powerful tool in

data analysis. However, manifold learning application for

images are mainly based on holistic vectorized representa-

tions of images. The challenging question that we address

in this paper is how can we learn image manifolds from a

punch of local features in a smooth way that captures the

feature similarity and spatial arrangement variability be-

tween images. We introduce a novel framework for learn-

ing a manifold representation from collections of local fea-

tures in images. We first show how we can learn a feature

embedding representation that preserves both the local ap-

pearance similarity as well as the spatial structure of the

features. We also show how we can embed features from a

new image by introducing a solution for the out-of-sample

that is suitable for this context. By solving these two prob-

lems and defining a proper distance measure in the feature

embedding space, we can reach an image manifold embed-

ding space.

1. Introduction

Visual recognition is a fundamental and challenging

computer vision task. In recent years there have been

tremendous interest in the computer vision community on

recognition-related problems, such as object categoriza-

tion, localization, discovering object categories, recogniz-

ing generic objects from different views, etc.

There are two main motivation for this paper:

1) The importance of local features: local appearance-

based descriptors, such as SIFT [13], Geometric Blur [2],

KAS [7], etc., have proven to be very successful in generic

object recognition problems [14]. Such highly discrimina-

tive features can be successfully used for recognition even

without any shape (structure) information, e.g. [14]. There

has been also a lot of interest recently on encoding local

geometry on top of local features, which was shown to im-

prove recognition, e.g. [8, 20].

Figure 1. Example Embedding result of samples from four classes

of Caltech-101. Top: Embedding using our framework using 60

Geometric Blur local features per image. The embedding reflects

the perceptual similarity between the images. Bottom: Embedding

based on Euclidean image distance (no local features, image as a

vector representation). Notice that Euclidean image distance based

embedding is dominated by image intensity, i.e., darker images are

clustered together and brighter images are clustered.

2) Manifold Learning: Learning image manifold has

been shown to be quite useful for learning within class

variability, learning appearance manifolds from different

views [15], learning activity and pose manifolds for activity

recognition [5] and tracking, etc.

However, these two important directions do not quite in-

tersect. Almost all the prior applications of image mani-
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fold learning, whether linear or nonlinear, have been based

on holistic image representations where images are repre-

sented as vectors, e.g. the seminal work of Murase and Na-

yar [15]. Alternatively, manifold learning can be done on

local features if we can establish full correspondences be-

tween these features in all images, which explicitly estab-

lish a vector representation of all the features. For exam-

ple, Active Shape Models (ASM) [3] and alike algorithms

use specific landmarks that can be matched in all images.

Obviously it is not possible to establish such full correspon-

dences between all features in all images in generic object

recognition context.

On the other hand, vectorized representations of local

features based on histograms, e.g. bag of words alike rep-

resentations, cannot be used for learning image manifolds

since, theoretically, histograms are not vector spaces.

Another alternative for learning image manifolds is to

learn the manifold in a metric space where we can learn

a similarity metric between images (from local features).

Once such a similarity metric is defined, any manifold

learning technique can be used. Since we are interested

in problems such as learning within class variability man-

ifolds, view manifolds, or activity manifolds, the similar-

ity kernel should reflect both the local features’ appearance

affinity and the spatial structure similarity in a smooth way

to be able to capture the topology of the underlying im-

age manifold without distorting it. Such similarity kernel

should be also robust to clutter. There have been a vari-

ety of similarity kernels based on local features, e.g. pyra-

mid matching kernel [8], string kernels, etc. However, to

the best of our knowledge, none of these existing similarity

measures were shown to be able to learn a smooth manifold.

The challenging question that we address in this paper is

how can we learn image manifolds from a punch of local

features in a smooth way such that we can capture the fea-

ture similarity and spatial arrangement variability between

images. If we can answer this question, that will open the

door for explicit modeling of within class variability mani-

folds, modeling objects’ view manifolds, modeling activity

manifolds, all from local features.

The contribution of this paper is: we introduce a novel

framework for learning a manifold representation from col-

lections of local features in images. We first show how we

can learn a feature embedding representation that preserves

both the local appearance similarity as well as the spatial

structure of the features. We also show how we can em-

bed features from a new image by introducing a solution

for the out-of-sample that is suitable for this context. By

solving these two problems and defining a proper distance

measure in the feature embedding space, we can reach an

image manifold embedding space. Fig. 1-top shows an ex-

ample embedding of sample images from four classes of

the Caltech101 dataset [12] where the manifold was learned

from local features detected on each image. As can be no-

ticed, all images contain significant amount of clutter, yet

the embedding clearly reflects the perceptual similarity be-

tween images as we might expect. This obviously cannot

be achieved using holistic image vectorization, as can be

seen in Fig. 1-bottom, where the embedding is dominated

by similarity in image intensity. To the best of our knowl-

edge, this cannot be achieved with any existing similarity

measure on local features.

In the experiment section we show several applications

of the proposed framework on object categorization and lo-

calization.

2. Feature Embedding Space

We are given K images, each is represented with a set of

feature points. Let us denote such sets by, X1, X2, · · ·XK

where Xk =
{

(xk
1 , fk

1 ), · · · , (xk
Nk

, fk
Nk

)
}

. Each feature

point (xk
i , fk

i ) is defined by its spatial location, xk
i ∈ R

2,

in its image plane and its appearance descriptor fk
i ∈

R
D, where D is the dimensionality of the feature descrip-

tor space1. For example, the feature descriptor can be a

SIFT [13], GB [2], etc. Notice that the number of features

in each image might be different. We use Nk to denote the

number of feature points in the k-th image. Let N be the

total number of points in all sets, i.e., N =
∑K

k=1
Nk.

We are looking for an embedding for all the feature

points into a common embedding space. Let yk
i ∈ R

d de-

notes the embedding coordinate of point (xk
i , fk

i ), where

d is the dimensionality of the embedding space, i.e., we

are seeking a set of embedded point coordinates Y k =
{

yk
1 , · · · , yk

Nk

}

for each input feature set Xk. The embed-

ding should satisfy the following two constraints

• The feature points from different point sets with high

feature similarity should become close to each other in

the resulting embedding as long as they do not violate

the spatial structure.

• The spatial structure of each point set should be pre-

served in the embedding space.

To achieve a model that preserves these two constraints

we use two data kernels based on the affinities in the spa-

tial and descriptor domains separately. The spatial affin-

ity (structure) is computed within each image and is rep-

resented by a weight matrix Sk where Sk
ij = Ks(x

k
i , xk

j )
and Ks(·, ·) is a spatial kernel local to the k-th image that

measures the spatial proximity. Notice that we only mea-

sure intra-image spatial affinity, no geometric similarity is

measured across images. The feature affinity between im-

age p and q is represented by the weight matrix Upq where

1Throughout this paper, we will use superscripts to indicate an image

and subscripts to indicate point index within that image, i.e., x
k

i
denotes

the location of feature i in the k-th image.



U
pq
ij = Kf (fp

i , f
q
j ) and Kf (·, ·) is a feature kernel that

measures the similarity in the descriptor domain between

the i-th feature in image p and the j-th feature in image q.

Here we describe the framework given any spatial and fea-

ture weights in general and later in this section we will give

specific details on which kernels we use.

Let us jump ahead and assume an embedding can be

achieved satisfying the aforementioned spatial structure and

the feature similarity constraints. Such an embedding space

represents a new Euclidean “Feature” space that encodes

both the features’ appearance and the spatial structure in-

formation. Given such an embedding, the similarity be-

tween two sets of features from two images can be com-

puted within that Euclidean space with any suitable set sim-

ilarity kernel. Moreover, unsupervised clustering can also

be achieved in this space.

Given the above stated goals, we reach the following ob-

jective function on the embedded points Y , which need to

be minimized

Φ(Y ) =
∑

k

∑

i,j

‖yk
i − yk

j ‖
2Sk

ij +
∑

p,q

∑

i,j

‖yp
i − y

q
j‖

2U
pq
ij ,

(1)

where k, p and q = 1, · · · ,K, p 6= q, and ‖ · ‖ is the

L2 Norm. The objective function is intuitive; the first term

preserves the spatial arrangement within each set, since it

tries to keep the embedding coordinates yk
i and yk

j of any

two points xk
i and xk

j in a given point set close to each other

based on their spatial kernel weight Sk
ij . The second term

of the objective function tries to bring close the embedded

points y
p
i and y

q
j if their feature similarity kernel U

pq
ij is

high.

This objective function can be rewritten using one set of

weights defined on the whole set of input points as:

Φ(Y ) =
∑

p,q

∑

i,j

‖yp
i − y

q
j‖

2A
pq
ij , (2)

where the matrix A is defined as

A
pq
ij =

{

Sk
ij p = q = k

U
pq
ij p 6= q

(3)

where Apq is the pq block of A.

The matrix A is an N × N weight matrix with K × K

blocks where the pq block is of size Np×Nq. The k-th diag-

onal block is the spatial structure kernel Sk for the k-th set.

The off-diagonal pq block is the descriptor similarity ker-

nels Upq. The matrix A is symmetric by definition since

diagonal blocks are symmetric and since Upq = UqpT

.

The matrix A can be interpreted as a weight matrix be-

tween points on a large point set where all the input points

are involved in this point set. Points from a given image

are linked be weights representing their spatial structure

Sk; while nodes across different data sets are linked by

suitable weights representing their feature similarity kernel

Upq . Notice that the size of the matrix A is linear in the

number of input points.

We can see that the objective function Eq. 2 reduces to

the problem of Laplacian embedding [16] of the point set

defined by the weight matrix A. Therefore the objective

function reduces to

Y∗ = arg min
YT DY=I

tr(YT LY), (4)

where L is the Laplacian of the matrix A, i.e., L = D−A,

where D is the diagonal matrix defined as Dii =
∑

j Aij .

The N × d matrix Y is the stacking of the desired embed-

ding coordinates such that,

Y =
[

y1
1 , . . . , y1

N1
, y2

1 , . . . , y2
N2

, . . . yK
1 , . . . , yK

NK

]T

The constraint YT DY = I removes the arbitrary scal-

ing and avoids degenerate solutions [16]. Minimizing this

objective function is a straight forward generalized eigen-

vector problem: Ly = λDy. The optimal solution can be

obtained by the bottom d nonzero eigenvectors. The re-

quired N embedding points Y are stacked in the d vectors

in such a way that the embedding of the points of the first

point set will be the first N1 rows followed by the N2 points

of the second point set, and so on.

2.1. IntraImage Spatial Structure

The spatial structure weight matrix Sk should reflect the

spatial arrangement of the features in each image k. In gen-

eral, it is desired that the spatial weight kernel be invariant

to geometric transformations. However, this is not always

achievable.

One obvious choice is a kernel based on the Euclidean

distances between features in the image space, which would

be invariant to translation and rotation. Instead we use an

affine invariant kernel based on subspace invariance [23].

Given a set of feature points from an image at locations

{xi ∈ R
2, i = 1, · · · , N}, we can construct a configura-

tion matrix

X = [x1x2 · · ·xN ] ∈ R
N×3

where xi is the homogenous coordinate of point xi. The

range space of such configuration matrix is invariant under

affine transformation. It was shown in [23] that an affine

representation can be achieved by QR decomposition of the

projection matrix of X, i.e.

QR = X(XT X)−1XT

The first three columns of Q, denoted by Q′, gives an affine

invariant representation of the points. We use a Gaussian



kernel based on the Euclidean distance in this affine invari-

ant space, i.e.,

Ks(xi, xj) = e−‖qi−qj‖
2/2σ2

where qi, qj are the i-th and j-th rows of Q′

2.2. InterImage Feature Affinity

The feature weight matrix Upq should reflect the feature-

to-feature similarity in the descriptor space between the p-th

and q-th sets. An obvious choice is the widely used affinity

based on a Gaussian kernel on the squared Euclidean dis-

tance in the feature space, i.e.,

G
pq
ij = e−‖fp

i
−fq

j ‖
2

/2σ2

given a scale σ. Another possible choice is a soft correspon-

dence kernel that enforces the exclusion principle based on

the Scott and Longuet-Higgins algorithm [18]. We used

such a kernel with the objective function in Eq 1 for fea-

ture matching in [21].

3. Solving the out-of-sample problem

Given the feature embedding space learned from a col-

lection of training images and given a new image repre-

sented with a set of features Xν = {(xν
i , fν

i )}, it is desired

to find the coordinates of these new feature points in the em-

bedding space. This is an out-of-sample problem, however

it is quite challenging. Most of out-of-sample solutions [1]

depends on learning a nonlinear mapping function between

the input space and the embedding space. This is not appli-

cable here since the input is not a vector space, rather a col-

lection of points. Moreover, the embedding coordinate of a

given feature depends on all the features in the new image

(because of the spatial kernel). The solution we introduce

here is inspired by the formulation in [24]2. For clarity, we

show how to solve for the coordinates of the new features of

a single new image. The solution can be extended to embed

any number of new images in batches in a straightforward

way.

We can measure the feature affinity in the descriptor

space between the features of the new image and the train-

ing data descriptors using the feature affinity kernel defined

in Sec 2. The feature affinity between image p and the

new image is represented by the weight matrix Uν,p where

U
ν,p
ij = Kf (fν

i , f
p
j ). Similarly, the spatial affinity (struc-

ture) within the new image can be encoded with the spatial

affinity kernel. The spatial affinity (structure) of the new im-

age’s features is represented by a weight matrix Sν where

Sν
ij = Ks(x

ν
i , xν

j ). Notice that, consistently, we do not

2We are not using the approach in [24] for coordinate propagation, we

are only using a similar optimization formulation.

measure any inter geometric similarity between images, we

only encode intra-geometric constraints within each image.

We have a new embedding problem in hand. Given

the sets X1, X2, · · ·XK , Xν where the first K sets are the

training data and Xν is the new set, we need to find embed-

ding coordinates for all the features in all the sets, i.e., we

need find {yk
i } ∪ {yν

j }, i = 1, · · · , Nk and k = 1, · · · ,K,

j = 1, · · · , Nν using the same objective function in Eq 13.

However, we need to preserve the coordinates of the already

embedded points. Let ŷk
i be the original embedding coor-

dinates of the training data. We now have a new constraint

that we need to satisfy

yk
i = ŷk

i , for i = 1, · · · , Nk, k = 1, · · · ,K

.

Following the same derivation in Sec 2, and adding the

new constraint, we reach the following optimization prob-

lem in Y

min tr(YT LY)
s.t. yk

i = ŷk
i , i = 1, · · · , Nk, k = 1, · · · ,K

(5)

where

Y =
[

y1
1 , . . . , y1

N1
, . . . yK

1 , . . . , yK
NK

, yν
1 , . . . , yν

Nν

]T

where L is the laplacian of the (N +Nν)×(N +Nν) matrix

A is defined as

A =

(

Atrain UνT

Uν Sν

)

(6)

where Atrain is defined in Eq 3 and Uν = [Uν,1 · · ·Uν,K ]
Notice that the constrain YT DY = I, which was used in

Eq 4 is not needed anymore since the equality constraints

avoid the degenerate solution.

Unlike the problem in Eq 4, which is quadratic program-

ming with quadratic constraints that can be solved by as an

eigenvalue problem, the problem in Eq 5 is a quadratic pro-

gramming with linear equality constraints. It was shown

in [24] that this problem can be divided into d subproblems

(one in each embedding dimension), each of which is a QP

with N + Nν variables, N of which are known.

3.1. Populating the Embedding Space

The out-of-sample framework is essential not only to be

able to embed features from a new image for classification

purpose, but also to be able to embed large number of im-

ages with large number of features. The feature embedding

framework in Sec 2 solves an Eigenvalue problem on a ma-

trix of size N × N where N is the total number of features

3In this case the sets indices k, p, and q = 1, · · ·K + 1, to include the

new set



in all training data. Therefore, there is a computational lim-

itations on the number of training images and the number of

features per image that can be used. Given a large training

data, we use a two a step procedure to establish a compre-

hensive feature embedding space:

1. Initial Embedding: Given a small subset of training

data with a small number of features per image, solve

for an initial embedding using Eq 4.

2. Populate Embedding: Embed the whole training data

with a larger number of features per image, one image

at a time by solving the out-of-sample problem in Eq 5

4. From Feature Embedding to Image Mani-

fold Embedding

The embedding achieved in Sec 2 is an embedding of the

features where each image is represented by a set of coordi-

nates in that space. This Euclidean space can be the basis to

study image manifolds. All we need is a measure of simi-

larity between two images in that space. There are a variety

of similarity measures that can be used. For robustness, we

chose to use a percentile-based Hausdorff based distance to

measure the distance between two sets of features from two

images, define as

H(Xp, Xq) = max{
l%

max
j

min
i

‖yp
i −y

q
j‖,

l%
max

i
min

j
‖yp

i −y
q
j‖}

(7)

where l is the percentile used. In all the experiments we

set the percentile to 50%, i.e., the median. Since this dis-

tance is measured in the feature embedding space, it reflects

both feature similarity and shape similarity. Once a distance

measure between images is defined, any manifold embed-

ding techniques, such as MDS [4], LLE [17], Laplacian

Eigen maps [16], etc., can be used to achieve an embedding

of the image manifold where each image is represented as a

point in that space. We call this space “Image-Embedding”

space and denote its dimensionality by dI to disambiguate

it from the “Feature-Embedding” space with dimensionality

d.

5. Experimental Results

In all experiments we used the Geometric Blur features

(GB) [2]. It was shown in [20] that adding spatial informa-

tion, geometric features, such as GB, outperform other fea-

tures. This has been also confirmed with our experiments.

In all experiments we set the dimensionality of the feature

embedding space to be equal to the minimum number of

features per image used in the initial embedding. In all ex-

periments with SVM, a linear kernel was used.

traning/test splits

Classifier 1/5 1/3 1/2 2/3

Feature embedding - SVM 74.25 80.29 82.85 87.02

Image Manifold - SVM 80.85 84.96 88.37 91.27

Feature embedding - 1-NN 70.90 74.13 77.49 79.63

Image Manifold - 1-NN 71.93 75.29 78.26 79.34

Table 1. Shape dataset: Average accuracy for different classifier

setting based on the proposed representation

5.1. Recognition: Shape

We used the “Shape” dataset [20] to experiment with the

proposed approach. The Shape dataset contains 10 classes

(cup, fork, hammer, knife, mug, pan, pliers, pot, sauce pan

and scissors), with a total of 724 images. The dataset ex-

hibits large within-class variation and moreover there are

similarity between classes, e.g. mugs and cups; saucepans

and pots. We used 60 images (6 samples per class chosen

randomly) to learn the initial feature embedding of dimen-

sionality 60. Each image is represented using 60 GB feature

descriptor. The initial feature embedding is then expanded

using out-of-sample to include all the training images with

120 features per images. It is very hard to visualize the

feature embedding space, however, the image manifold em-

bedding can be visualized. Fig. 2 shows the resulting im-

age embedding using the first two dimensions. We can eas-

ily notice how different objects are clustered in the space.

There are many interesting structures we can notice in the

embedding, e.g. mugs and cups are close to each other.

To evaluate the recognition accuracy using the proposed

approach, we used different training/testing random splits

with 1/5, 1/3, 1/2, 2/3 for training. We used 10 times cross

validation and we report the average accuracy. We evaluated

four different classifiers based on the proposed representa-

tion: 1) Feature-embedding with SVM, 2) Image embed-

ding with SVM, 3) Feature embedding with 1-NN classifier,

4) Image-embedding with 1-NN classifier. Table 1 shows

the results for the four different classifier settings. We can

clearly notice that a manifold-based classifier enhances the

results over a feature-based classifier

In [20] the Shape dataset was used to compare the ef-

fect of modeling feature geometry by dividing the object’s

bounding box to 9 grid cells (localized bag of words) in

comparison to geometry-free bag of words. Results were

reported using SIFT [13], GB [2], and KAS [7] features.

Table 2 shows the reported accuracy in [20] for compari-

son. All reported results are based on 2:1 ratio for train-

ing/testing split. Unlike [20] where bounding boxes are

used both in training and testing, we do not use any bound-

ing box information since our approach does not assume a

bounding box for the object to encode the geometry and yet

get better result.



Figure 2. Manifold Embedding for 60 samples from Shape dataset using 60 GB local features per image

Accuracy %

Feature used SIFT GB KAS

Our approach - 91.27 -

bag of words (reported by [20]) 75 69 65

Localized bag of words ([20]) 88 86 85
Table 2. Shape dataset: Comparison with reported results

5.2. RecognitionCaltech 101

The recognition accuracy of the proposed approach was

evaluated using subsets of the Caltech-101 dataset [12]. To

make it easier to compare to reported results, we used three

different subsets of Caltech-101 that are typically used for

evaluation: Caltech-4-I (faces, airplanes, motorbikes, leop-

ard) as used in [19, 22, 9], Caltech-4-II (faces, airplanes,

motorbikes, cars-rear) as used in [6, 10], Caltech-6 (faces,

airplanes, motorbikes, cars-rear, ketch, watches) as used

in [6, 10]. In all cases we used 60 geometric blur features

per image. We used 12 images per class to achieve the ini-

tial feature embedding of dimensionality 60. The whole

data set is then embedded using out-of-sample. The image

manifold embedding is then constructed using a Haussdorff

distance (Eq. 7). Table 3 shows the recognition accuracy

using different number of training data and three different

classifiers: FE-SVM: Feature embeding space SVM classi-

fier, IE-SVM: Image manifold embedding SVM classifier,

and FE-1-NN: Feature embedding space first nearest neigh-

bor classifier. In all cases, the images are used without any

bounding box knowledge.

As can be consistently noticed, even a simple 1-NN clas-

sifier based on the proposed feature representation gives a

superior result. It is also noticeable that we achieve very

good results with as little as 5 training samples per class.

As can be predicted, the image manifold embedding did

nor perform better than just using the feature embedding at

smaller training sets (< 30). This is expected since a large

number of images are needed to construct a useful mani-

fold. It can be noticed also that the improvement gained

by embedding the image manifold in this case is less than

what was achieved with the “Shape” dataset (Table 1). This

is also expected since, unlike “Shape” dataset, Caltech101

dataset contains lots of clutter besides the objects.

To visualize the obtained manifold, we show in Fig. 1

the embedded image manifold (first two dimensions) ob-

tained after the initial feature embedding (12 images per

class, 60 features per image). Using the whole data set we

can achieve a more comprehensive embedding of all im-

ages. This is shown in Fig. 3 for both Caltech-4-II (2559

images) and Caltech-6 subsets (2912 images). In these ex-

ample we used MDS to achieve the embedding using the

Haussdorff metric (Eq 7) in the embedded feature space.

The figure shows the embedding in the first two dimensions

where each image is represented by a point. In both cases,

we can notice that the classes are well clustered in the space,

even though we are only showing only two dimensional em-

bedding.

5.3. Object Localization

The goal of this experiment is to evaluate the robustness

of the proposed approach to clutter in the context of object



# traning images

size 5 10 30 50 100

Classifier: FE-SVM

Caltech-4-I 2233 92.93 95.53 97.54 97.83 98.69

Caltech-4-II 2559 95.92 96.74 98.35 98.57 98.84

Caltech-6 2912 88.16 94.45 96.67 97.14 98.08

Classifier: IE-SVM

Caltech-4-I 2233 87.46 94.98 97.65 98.14 98.73

Caltech-4-II 2559 86.01 96.73 98.35 98.69 98.84

Caltech-6 2912 82.63 93.77 96.99 97.73 98.42

Classifier: FE-1-NN

Caltech-4-I 2233 91.57 94.39 96.41 97.22 98.11

Caltech-4-II 2559 95.25 96.03 97.38 98.01 98.45

Caltech-6 2912 89.097 92.60 94.83 95.65 96.99

Table 3. Caltech-101 dataset: Average accuracy with different

training sizes. FE-SVM: Feature embedding space SVM classifier,

IE-SVM: Image manifold embedding SVM classifier, and FE-1-

NN: Feature embedding space first nearest neighbor classifier.
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Figure 3. Manifold Embedding for all images in Caltech-4-II,

Caltech-6. Only first two dimensions are shown.

localization. Many approaches that encode feature geome-

try are based on a bounding box, e.g. [20, 8]. Our approach

does not require such constraint and is robust to the exis-

tence of heavy visual clutter. Therefore, it can be use in

localization as well as recognition.

We used Caltech-4-I data (as defined above) for evalua-

tion. In this case we learned the feature embedding from all

the four classes, using only 12 images per class. For evalu-

ation we used 120 features in each query image and embed

them by out-of-sample. The object is localized by finding

the top 20% features closer to the training data (by com-

puting feature distances in the feature embedding space.)

Class TPR FPR BBHR BBMR

Airplanes 98.08% 1.92% 100% 0/800

Faces 68.43% 31.57% 96.32% 16/435

Leopards 76.81% 23.19% 98% 4/200

Motorbikes 99.63% 0.37% 100% 0/798
Table 4. Object localization results - Caltech101-4

Table 4 shows the results in terms of the True Positive Ra-

tio (TPR): the percentage of localized features inside the

bounding box, and False Positive Ratio (FPR), Bounding

Box Hit Ratio (BBHR), the percentage of images with more

than 5 features localized (a metric defined in [11]), and

Bounding Box Miss Ratio (BBMR).

5.4. Visualizing Objects View Manifold

COIL data set [15] has been widely used in holistic

recognition approaches where images are represented by

vectors [15]. This is a relatively easy data set where ob-

ject view manifold can be embedded using PCA using the

whole image as a vector representation [15]. It has also been

used extensively in Manifold learning literature, also using

whole image as a vector representation. We use this data to

validate that our approach can really achieve an embedding

that is topologically correct using local features and the pro-

posed framework. Fig 4 shows two examples of the result-

ing view manifold embedding. In this example we used 36

images with 60 GB features per image. The figure clearly

shows an embedding of a closed one dimensional manifold

in a two-dimensional embedding space. To the best of our

knowledge, there is no previously reported results that suc-

cessfully embed this kind of manifolds using local features.

5.5. Conclusion

In this paper we introduced a framework that enables the

study of image manifolds from local features. We intro-

duced an approach to embed local features based on their

inter-image similarity and their intra-image structure. We

also introduced a relevant solution for the out-of-sample

problem, which is essential to be able to embed large data

sets. Given these two components we showed that we can

embed image manifolds from local features in a way that re-

flects the perceptual similarity and preserves the topology of

the manifold. Experimental results showed that the frame-

work can achieve superior results in recognition and local-

ization. Computationally, the approach is very efficient.

The initial embedding is achieved by solving an eigenvalue

problem which is done offline. Incremental addition of im-

ages, as well as solving out-of-sample for a query image is

done in a time that is negligible to the time needed by the

feature detector per image.

There are many interesting open questions that we plan

to investigate including, theoretical and empirical studies to



Figure 4. Examples of view manifolds learned from local features

understand how to control the embedding to be biased to-

wards enforcing rigidity vs. enforcing descriptor similarity.

In this paper both terms in the objective function have the

same weight. We also will investigate the application of the

approach to view estimation, facial expression analysis, and

activity recognition.
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