

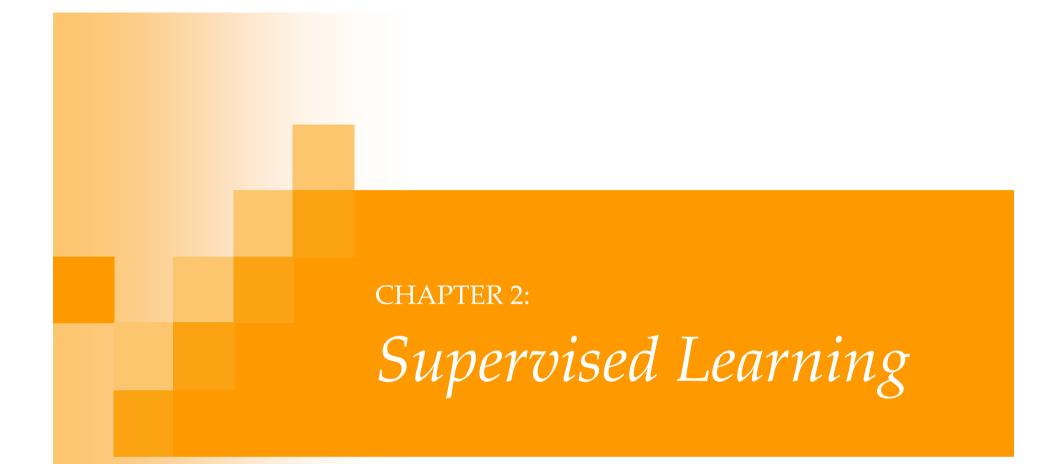
Machine Learning

Lecture Slides for

INTRODUCTION TO Machine Learning

ETHEM ALPAYDIN © The MIT Press, 2004

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml



Learning a Class from Examples

Class *C* of a "family car"

□ **Prediction:** Is car *x* a family car?

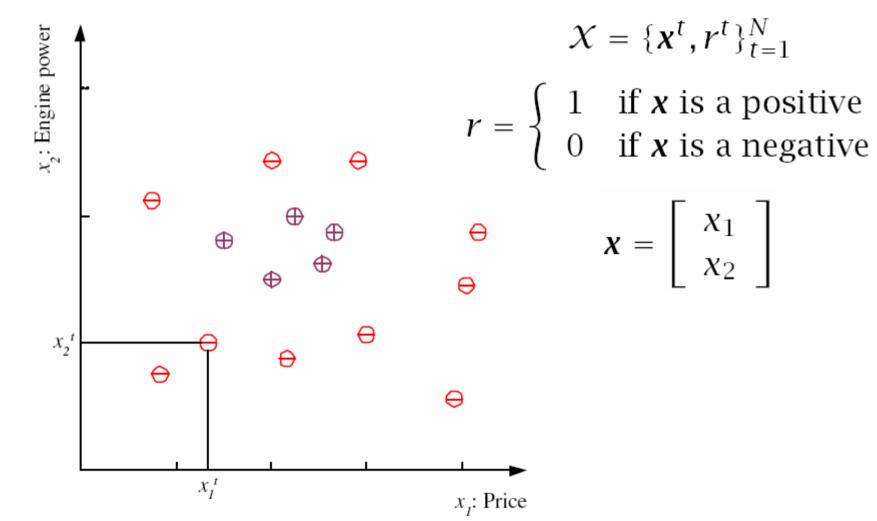
- Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

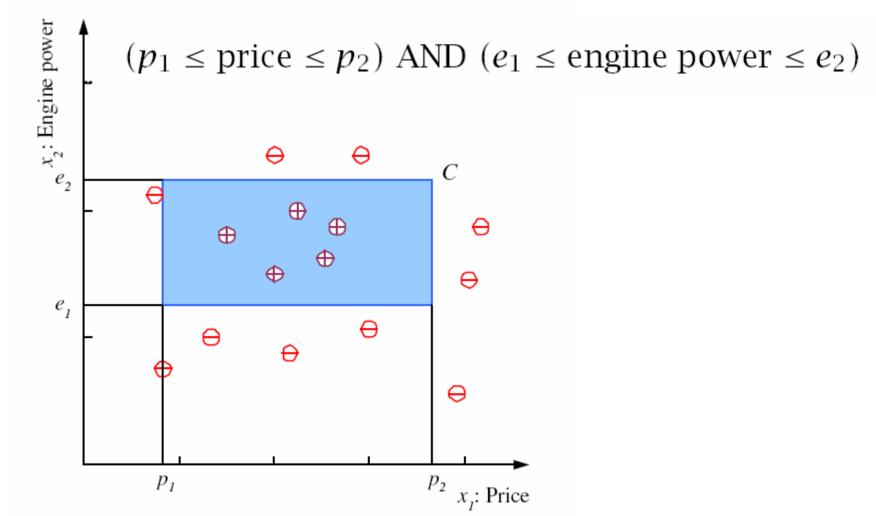
Input representation:

 x_1 : price, x_2 : engine power

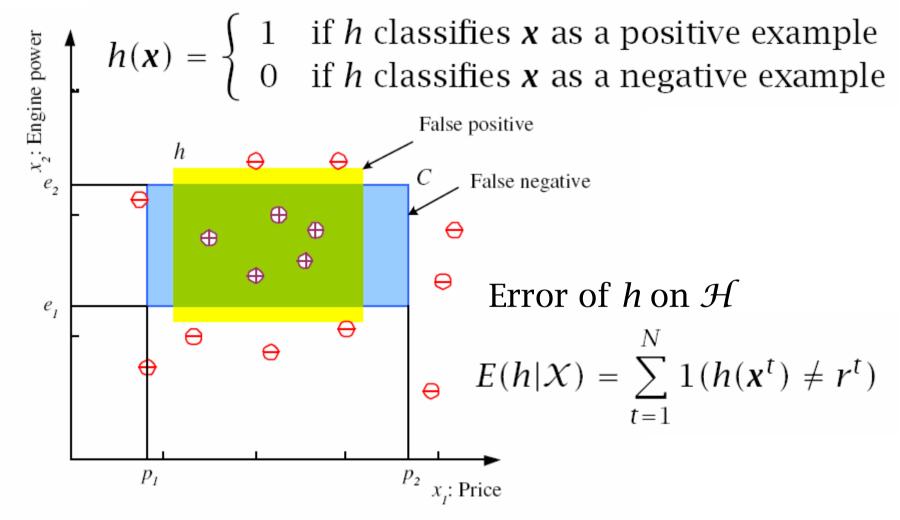
Training set X



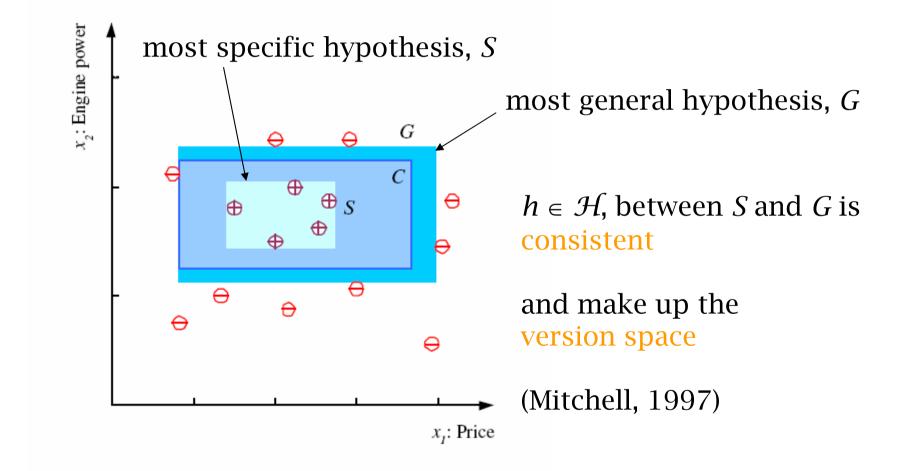
Class C



Hypothesis class \mathcal{H}

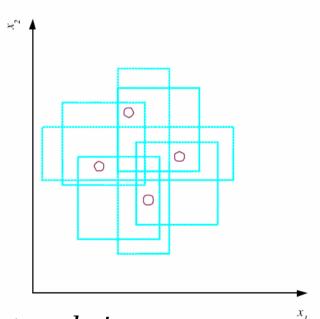


S, *G*, and the Version Space



VC Dimension

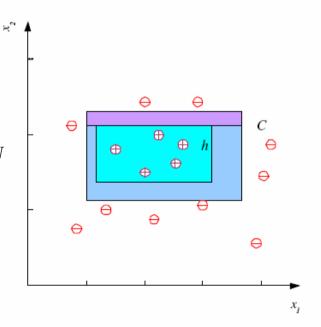
- *N* points can be labeled in 2^{*N*} ways as +/-
- \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these: $VC(\mathcal{H}) = N$



An axis-aligned rectangle shatters 4 points only !

Probably Approximately Correct (*PAC*) *Learning*

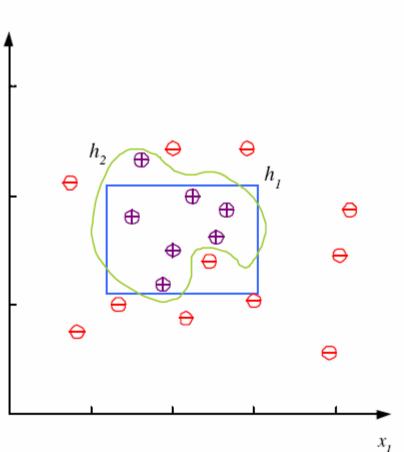
- How many training examples *N* should we have, such that with probability at least 1 δ, *h* has error at most ε ?
 (Blumer et al., 1989)
- Each strip is at most ε/4
- Pr that we miss a strip $1 \varepsilon/4$
- Pr that *N* instances miss a strip $(1 \varepsilon/4)^N$
- Pr that *N* instances miss 4 strips $4(1 \varepsilon/4)^N$
- $4(1 \varepsilon/4)^N \le \delta$ and $(1 x) \le \exp(-x)$
- $4\exp(-\epsilon N/4) \le \delta$ and $N \ge (4/\epsilon)\log(4/\delta)$



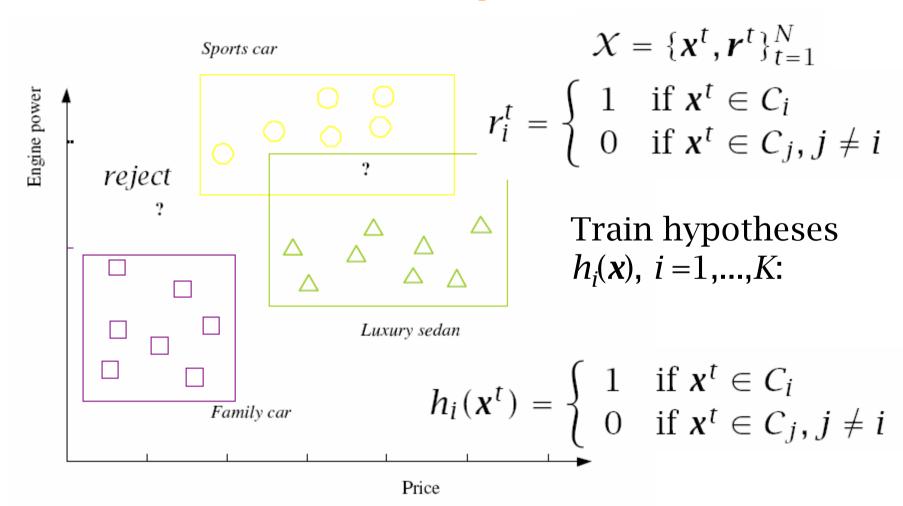
Noise and Model Complexity

Use the simpler one because

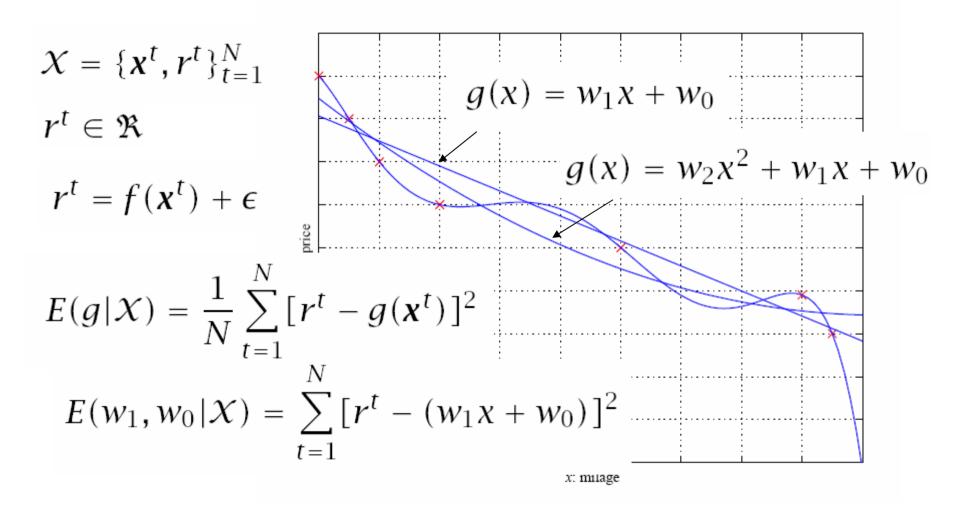
- Simpler to use
 (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)



Multiple Classes, C_i i=1,...,K



Regression



Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about \mathcal{H}
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , $c(\mathcal{H})$,
 - 2. Training set size, *N*,
 - 3. Generalization error, *E*, on new data
- $\Box \quad \text{As } N\uparrow, E\downarrow$
- □ As $c(\mathcal{H})$ ↑, first $E \downarrow$ and then E^{\uparrow}

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 Training set (50%)
 - □ Validation set (25%)
 - □ Test (publication) set (25%)
- Resampling when there is few data

Dimensions of a Supervised Learner

- 1. Model : $g(x|\theta)$
- 2. Loss function: $E(\theta|X) = \sum_{t} L(r^{t}, g(x^{t}|\theta))$
- 3. Optimization procedure:

$$\theta^* = \arg\min_{\theta} E(\theta|\mathcal{X})$$