Lecture Slides for

INTRODUCTION TO

Machine Learning

ETHEM ALPAYDIN
© The MIT Press, 2004

alpaydin@boun.edu.tr
http://www.cmpe.boun.edu.tr/~ethem/i2ml
CHAPTER 1:
Introduction
Why “Learn”?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to “learn” to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)
What We Talk About When We Talk About “Learning”

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:

 People who bought “Da Vinci Code” also bought “The Five People You Meet in Heaven” (www.amazon.com)

- Build a model that is *a good and useful approximation* to the data.
Data Mining

- **Retail**: Market basket analysis, Customer relationship management (CRM)
- **Finance**: Credit scoring, fraud detection
- **Manufacturing**: Optimization, troubleshooting
- **Medicine**: Medical diagnosis
- **Telecommunications**: Quality of service optimization
- **Bioinformatics**: Motifs, alignment
- **Web mining**: Search engines
- ...
What is Machine Learning?

- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
 - Solve the optimization problem
 - Representing and evaluating the model for inference
Applications

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning
Learning Associations

- Basket analysis:
 \[P(Y | X) \] probability that somebody who buys \(X \) also buys \(Y \) where \(X \) and \(Y \) are products/services.

Example: \(P(\text{chips} | \text{beer}) = 0.7 \)
Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their *income* and *savings*

Discriminant: IF *income* > θ_1 AND *savings* > θ_2 THEN low-risk ELSE high-risk
Classification: Applications

- Aka Pattern recognition
- **Face recognition**: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- **Character recognition**: Different handwriting styles.
- **Speech recognition**: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- **Medical diagnosis**: From symptoms to illnesses
- ...

...
Face Recognition

Training examples of a person

Test images

AT&T Laboratories, Cambridge UK
http://www.uk.research.att.com/facedatabase.html
Regression

- Example: Price of a used car
- x: car attributes
- y: price
 - $y = g(x | \theta)$
 - $g(\cdot)$ model,
 - θ parameters
Regression Applications

- Navigating a car: Angle of the steering wheel (CMU NavLab)
- Kinematics of a robot arm

\[
\alpha_1 = g_1(x,y) \\
\alpha_2 = g_2(x,y)
\]

- Response surface design
Supervised Learning: Uses

- **Prediction of future cases:** Use the rule to predict the output for future inputs
- **Knowledge extraction:** The rule is easy to understand
- **Compression:** The rule is simpler than the data it explains
- **Outlier detection:** Exceptions that are not covered by the rule, e.g., fraud
Unsupervised Learning

- Learning “what normally happens”
- No output
- Clustering: Grouping similar instances
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs
Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...
Resources: Datasets

- Statlib: http://lib.stat.cmu.edu/
- Delve: http://www.cs.utoronto.ca/~delve/
Resources: Journals

- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association
- ...

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.0)
Resources: Conferences

- International Conference on Machine Learning (ICML)
 - ICML05: http://icml.ais.fraunhofer.de/
- European Conference on Machine Learning (ECML)
 - ECML05: http://ecmlpkdd05.liacc.up.pt/
- Neural Information Processing Systems (NIPS)
 - NIPS05: http://nips.cc/
- Uncertainty in Artificial Intelligence (UAI)
 - UAI05: http://www.cs.toronto.edu/uai2005/
- Computational Learning Theory (COLT)
 - COLT05: http://learningtheory.org/colt2005/
- International Joint Conference on Artificial Intelligence (IJCAI)
 - IJCAI05: http://ijcai05.csd.abdn.ac.uk/
- International Conference on Neural Networks (Europe)
 - ICANN05: http://www.ibspan.waw.pl/ICANN-2005/
- ...