

- Internal Decision nodes: Each node m implement a test function $f_m(x)$ with discrete outcomes labeling the branches. Given an input, the test is applied and one of the branches is taken depending on the outcome.
- Terminal leaves: output: class code (for classification) or numeric value (for regression).
- Each $f_m(x)$ defines a discriminant in the d-dimensional input space dividing it into smaller regions which are further subdivided as we take a path from the root down.
- Each terminal leaf defines a localized region in the input space where instances falling in this region have the same label.

Training Examples for the target concept PlayTennis							
Day Outlook	Temp	Hum.	Wind	PlayTennis			
D1 Sunny	Hot	High	Weak	No			
D2 Sunny	Hot	High	Strong	No			
D3 Overcast	Hot	High	Weak	Yes			
D4 Rain	Mild	High	Weak	Yes			
D5 Rain	Cool	Nml	Weak	Yes			
D6 Rain	Cool	Nml	Strong	No			
D7 Overcast	Cool	Nml	Strong	Yes			
D8 Sunny	Mild	High	Weak	No			
D9 Sunny	Cool	Nml	Weak	Yes			
D10 Rain	Mild	Nml	Weak	Yes			
D11 Sunny	Mild	Nml	Strong	Yes			
D12 Overcast	Mild	High	Strong	Yes			
D13 Overcast	Hot	Nml	Weak	Yes			
D14 Rain	Mild	High	Strong	No			

Evolution of Decision Trees:

- CLS (Concept Learning System) Earl Hunt 1960's
- ID3 (Interactive Dichotemizer 3) Quinlin 70's and 80's
- C4.5 Quinlin 90's

CS 536- Fall 2005- -

Top-Down Induction

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next *node*
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

CS 536-Fall 2005- -

Entropy

 $Entropy(S) = expected number of bits needed to encode class (<math>\oplus$ or \otimes) of a randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns - $\log_2 p$ bits to message having probability p.

So, expected number of bits to encode \oplus or \otimes of a random member of S:

 p_{\oplus} (- log p_{\oplus}) + p_{\otimes} (- log p_{\otimes})

CS 536-Fall 2005-

Day Outlook	Temp	Hum.	Wind	PlayTennis	
D1 Sunny	Hot	High	Weak	No	
D2 Sunny	Hot	High	Strong	No	
D3 Overcast	Hot	High	Weak	Yes	
D4 Rain	Mild	High	Weak	Yes	
D5 Rain	Cool	Nml	Weak	Yes	
D6 Rain	Cool	Nml	Strong	No	
D7 Overcast	Cool	Nml	Strong	Yes	
D8 Sunny	Mild	High	Weak	No	
D9 Sunny	Cool	Nml	Weak	Yes	
D10 Rain	Mild	Nml	Weak	Yes	
D11 Sunny	Mild	Nml	Strong	Yes	
D12 Overcast	Mild	High	Strong	Yes	
D13 Overcast	Hot	Nml	Weak	Yes	
D14 Rain	Mild	High	Strong	No	

Why prefer short hypotheses? Argument in favor:

- Fewer short hyps. than long hyps.
 - a short hypthat fits data unlikely to be coincidence _
 - a long hyp that fits data might be coincidence

Argument opposed:

- There are many ways to define small sets of hyps
- e.g., all trees with a prime number of nodes that use attributes beginning with "Z"
- What's so special about small sets based on size of hypothesis?? ٠

CS 536-Fall 2005-

Overfitting

Consider error of hypothesis h over

- training data: error_{train}(h)
- entire distribution D of data: error_D(h)

Hypothesis h in H overfits training data if there is an alternative hypothesis h' in H such that

- error_{train}(h) < error_{train}(h'), and
- $error_D(h) > error_D(h')$

CS 536-Fall 2005-

Avoiding Overfitting? How can we avoid overfitting? • stop growing when data split not statistically significant • grow full tree, then post-prune (DP alg!) How to select "best" tree: • Measure performance over training data • Measure performance over separate validation data set • MDL: minimize size(tree) + size(misclassifications(tree))

CS 536- Fall 2005-

The Rules

...

IF (Outlook = Sunny) ^ (Humidity = High) THEN PlayTennis = No IF (Outlook = Sunny) ^ (Humidity = Normal) THEN PlayTennis = Yes

CS 536- Fall 2005- -

Sources

- ML: Chapter 3
- i2ML: Chapter 9
- Slides by Ethem Alpaydin
- Slides by Tom Mitchell as provided by Michael Littman

CS 536-Fall 2005- -