
CS 536 – Fall 2005- -

CS 536: Machine Learning

Decision Trees

Fall 2005

Ahmed Elgammal
Dept of Computer Science

Rutgers University

CS 536 – Fall 2005- -

• Decision Tree: a hierarchical model for supervised learning whereby
the local region is identified in a sequence of recursive splits .

CS 536 – Fall 2005- -

• Internal Decision nodes: Each node m implement a test function fm(x)
with discrete outcomes labeling the branches. Given an input, the test
is applied and one of the branches is taken depending on the outcome.

• Terminal leaves: output: class code (for classification) or nume ric
value (for regression).

• Each fm(x) defines a discriminant in the d-dimensional input space
dividing it into smaller regions which are further subdivided as we take
a path from the root down.

• Each terminal leaf defines a localized region in the input space where
instances falling in this region have the same label.

CS 536 – Fall 2005- -

Training Examples for the target concept PlayTennis
Day Outlook Temp Hum. Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Nml Weak Yes
D6 Rain Cool Nml Strong No
D7 Overcast Cool Nml Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Nml Weak Yes
D10 Rain Mild Nml Weak Yes
D11 Sunny Mild Nml Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Nml Weak Yes
D14 Rain Mild High Strong No

CS 536 – Fall 2005- -

• Decision Tree represents a disjunction of conjunctions of the
constraints on the attributes.

• Each path from the root to a leaf correspond to a conjunction of
attribute tests.

• The tree itself is a disjunction of these conjunctions.

(Outlook= Sunny ∧ Humidity = Normal)
∨ (Outlook = Overcast)

∨ (Outlook=Rain ∧Wind = Weak)

CS 536 – Fall 2005- -

Different kinds of decision Trees:

CS 536 – Fall 2005- -

Univariate Tree:
• One attribute at a time:
• Each decision node defines axis -

parallel hyperplane.
• Each leaf defines a hyper rectangular

decision surface.

Multivariate decision tree:
• all attributes each time:
• each decision node defines a hyperplane
• Each leaf defines a polyhedral decision

surface

CS 536 – Fall 2005- -

Whence Decision Trees?

Consider: Discrete Univariate Classification Trees
• Instances describable by attribute-value pairs
• Target function is discrete valued
• Disjunctive hypothesis may be required
• Possibly noisy training data or missing attribute

values
Examples:
• Equipment or medical diagnosis
• Credit risk analysis
• Many successful applications that outperform human

experts.

CS 536 – Fall 2005- -

Evolution of Decision Trees:

• CLS (Concept Learning System) Earl Hunt 1960’s
• ID3 (Interactive Dichotemizer 3) Quinlin 70’s and 80’s
• C4.5 Quinlin 90’s

CS 536 – Fall 2005- -

Top-Down Induction

Main loop:
1. A ← the “best” decision attribute for next node
2. Assign A as decision attribute for node
3. For each value of A, create new descendant of node
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then STOP,

Else iterate over new leaf nodes

CS 536 – Fall 2005- -

Which Attribute is Best?

What is a good quantitative measure of the worth of an attribute ?

CS 536 – Fall 2005- -

Measuring Entropy

• S is a sample of training examples

• p⊕ is the proportion of positive examples in S
• p⊗ is the proportion of negative examples in S
Entropy measures the impurity of S

Entropy(S)=-p⊕ log p⊕ - p⊗ log p⊗

CS 536 – Fall 2005- -

Entropy Function

CS 536 – Fall 2005- -

Entropy

Entropy(S) = expected number of bits needed to encode class (⊕
or ⊗) of a randomly drawn member of S (under the optimal,
shortest-length code)

Why?
Information theory: optimal length code assigns - log2 p bits to

message having probability p.
So, expected number of bits to encode ⊕ or ⊗ of a random

member of S:
p⊕ (- log p⊕) + p⊗ (- log p⊗)

CS 536 – Fall 2005- -

Information Gain

Gain(S, A) = expected reduction in entropy due to sorting S on A
Gain(S, A) ≡

Entropy(S) - Σv in Values(A) |Sv|/|S| Entropy(Sv)

Here, Sv is the set of training instances remaining from S after
restricting to those for which attribute A has value v.

CS 536 – Fall 2005- -

Which Attribute is Best?

CS 536 – Fall 2005- -

Training Examples
Day Outlook Temp Hum. Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Nml Weak Yes
D6 Rain Cool Nml Strong No
D7 Overcast Cool Nml Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Nml Weak Yes
D10 Rain Mild Nml Weak Yes
D11 Sunny Mild Nml Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Nml Weak Yes
D14 Rain Mild High Strong No

CS 536 – Fall 2005- -

Selecting the Next Attribute

Which attribute is the best classifier?
Gain(S, Humidity) = .940 - (7/14).985 - (7/14).592 = .151
Gain(S, Wind) = .940 - (8/14).811 - (6/14)1.0 = .048

CS 536 – Fall 2005- -

CS 536 – Fall 2005- -

Comparing Attributes

Ssunny = {D1,D2,D8,D9,D11}

• Gain (Ssunny , Humidity)
= .970 - (3/5) 0.0 - (2/5) 0.0 = .970

• Gain (Ssunny , Temp)
= .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570

• Gain (Ssunny , Wind)
= .970 - (2/5) 1.0 - (3/5) .918 = .019

CS 536 – Fall 2005- -

What is ID3 Optimizing?

The hypothesis space searched by ID3 is the set of possible
decision trees. Simple-to-Complex hill-climbing (greedy) search
guided by information gain measure

How would you find a tree that minimizes:
• misclassified examples?
• expected entropy?
• expected number of tests?
• depth of tree given a fixed accuracy?
• etc.?

How decide if one tree beats another?

CS 536 – Fall 2005- -

Hypothesis Space Search by ID3

ID3:

• representation: trees
• scoring : entropy
• search : greedy

CS 536 – Fall 2005- -

Hypothesis Space Search by ID3

• Hypothesis space is complete!
– Target function surely in there...

• Outputs a single hypothesis (which one?)
– Can't generate all consistent hypotheses... Single Concept.

• No back tracking
– Local minima... Not globally optimal.

• Statistically-based search choices
– Robust to noisy data...

• Inductive bias ˜ “prefer shortest tree”

CS 536 – Fall 2005- -

Inductive Bias in ID3

Note H is the power set of instances X

• Unbiased?
Not really...
• Preference for short trees, and for those with high information

gain attributes near the root
• Bias is a preference for some hypotheses, rather than a

restriction of hypothesis space H
• Occam’s razor: prefer the shortest hypothesis that fits the data

CS 536 – Fall 2005- -

Occam's Razor
Why prefer short hypotheses?
Argument in favor:
• Fewer short hyps . than long hyps.

– a short hypthat fits data unlikely to be coincidence
– a long hyp that fits data might be coincidence

Argument opposed:
• There are many ways to define small sets of hyps
• e.g., all trees with a prime number of nodes that use attributes beginning with

“Z”
• What's so special about small sets based on size of hypothesis??

CS 536 – Fall 2005- -

Overfitting
Consider adding noisy training example #15:
Sunny, Hot, Normal, Strong, PlayTennis = No
What effect on earlier tree?

CS 536 – Fall 2005- -

Overfitting

Consider error of hypothesis h over
• training data: errortrain(h)
• entire distribution D of data: errorD(h)
Hypothesis h in H overfits training data if there is an alternative

hypothesis h’ in H such that
• errortrain(h) < errortrain(h’), and
• errorD(h) > errorD(h’)

CS 536 – Fall 2005- -

Overfitting in Learning

CS 536 – Fall 2005- -

Overfitting in Learning

CS 536 – Fall 2005- -

Avoiding Overfitting

How can we avoid overfitting?

• stop growing when data split not statistically significant
• grow full tree, then post-prune (DP alg!)
How to select “best” tree:
• Measure performance over training data
• Measure performance over separate validation data set
• MDL: minimize

size(tree) + size(misclassifications(tree))

CS 536 – Fall 2005- -

Reduced-Error Pruning
Split data into training and validation set
Do until further pruning is harmful:
1. Evaluate impact on validation set of pruning each possible node (plus

those below it)
2. Greedily remove the one that most improves validation set accuracy
• produces smallest version of most accurate subtree
• What if data is limited?

CS 536 – Fall 2005- -

Effect of Pruning

CS 536 – Fall 2005- -

Rule Post-Pruning

1. Convert tree to equivalent set of rules

2. Prune each rule independently of others
3. Sort final rules into desired sequence for use
Perhaps most frequently used method (e.g., C4.5)

CS 536 – Fall 2005- -

Converting Tree to Rules

CS 536 – Fall 2005- -

The Rules

IF (Outlook = Sunny) ^ (Humidity = High)
THEN PlayTennis = No
IF (Outlook = Sunny) ^ (Humidity = Normal)
THEN PlayTennis = Yes
…

CS 536 – Fall 2005- -

Attributes with Many Values - C4.5

Problem:
• If one attribute has many values compared to the others, Gain will

select it
• Imagine using Date = Jun_3_1996 as attribute
One approach: use GainRatio instead

GainRatio(S,A) ≡ Gain(S,A) / SplitInfo(S,A)
SplitInfo(S,A) ≡ -Σ i=1

c |Si|/|S| log2 |Si|/|S|
where Si is subset of S for which A has value vi

CS 536 – Fall 2005- -

Attributes with Costs

Consider

• medical diagnosis, BloodTest has cost $150
• robotics, Width_from_1ft has cost 23 sec.
How to learn a consistent tree with low expected cost? Find min

cost tree.
Another approach: replace gain by
• Tan and Schlimmer (1990)

Gain2(S,A)/Cost(A)

• Nunez (1988) [w in [0,1]: importance)
(2Gain(S,A)-1)/(Cost(A)+1)w

CS 536 – Fall 2005- -

Unknown Attribute Values

Some examples missing values of A?

Use training example anyway, sort it
• If node n tests A, assign most common value of A among other

examples sorted to node n
• assign most common value of A among other examples with

same target value
• assign probability pi to each possible value vi of A (perhaps as

above)
– assign fraction pi of example to each descendant in tree

• Classify new examples in same fashion

CS 536 – Fall 2005- -

Sources

• ML: Chapter 3

• i2ML: Chapter 9
• Slides by Ethem Alpaydin
• Slides by Tom Mitchell as provided by Michael Littman

