Outlines

- What is Graph cuts
- Graph-based clustering
- Normalized cuts
- Image segmentation using Normalized cuts
- Other Cuts
What is a Graph Cut:

- We have undirected, weighted graph \(G=(V,E) \)
- Remove a subset of edges to partition the graph into two disjoint sets of vertices \(A,B \) (two sub graphs):

\[
A \cup B = V, \ A \cap B = \emptyset
\]

Each cut corresponds to some cost (cut): sum of the weights for the edges that have been removed.

\[
cut(A, B) = \sum_{u \in A, v \in B} w(u, v)
\]

\[
\begin{array}{c}
\text{A} \\
\text{B}
\end{array}
\]
Graph Cut

- In many applications it is desired to find the cut with minimum cost: minimum cut
- Well studied problem in graph theory, with many applications
- There exists efficient algorithms for finding minimum cuts

\[
\text{cut}(A, B) = \sum_{u \in A, v \in B} w(u, v)
\]

Graph theoretic clustering

- Represent tokens using a weighted graph
 - Weights reflects similarity between tokens
 - affinity matrix
- Cut up this graph to get subgraphs such that:
 - Similarity within sets maximum.
 - Similarity between sets minimum.
⇒ Minimum cut
• Use exponential function for edge weights

\[w(x) = e^{-(d(x)/\sigma)^2} \]

\(d(x) \): feature distance
Scale affects affinity

$$w(x) = e^{-\frac{(d(x)/\sigma)^2}{\sigma}}$$

Eigenvectors and clustering

- Simplest idea: we want a vector w giving the association between each element and a cluster.
- We want elements within this cluster to, on the whole, have strong affinity with one another.
- We could maximize

$$\sum w_i w_j$$

Association of element i with cluster n ×

Affinity between i and j ×

Association of element j with cluster n
Eigenvectors and clustering

- We could maximize \(w_n^T A w_n \)
- But need the constraint \(w_n^T w_n = 1 \)
- Using Lagrange multiplier \(\lambda \)

\[
\frac{d}{dn} \left(w_n^T A w_n + \lambda (w_n^T w_n - 1) \right) = 0
\]

\[
A w_n = \lambda w_n
\]

- This is an eigenvalue problem - choose the eigenvector of \(A \) with largest eigenvalue

Example eigenvector

[Image of two diagrams showing points and matrix with eigenvector]
Example eigenvector

The three eigenvectors corresponding to the next three eigenvalues of the affinity matrix.

Too many clusters! More obvious clusters!
More than two segments

• Two options
 – Recursively split each side to get a tree, continuing till the eigenvalues are too small
 – Use the other eigenvectors

Algorithm
• Construct an Affinity matrix A
• Computer the eigenvalues and eigenvectors of A
• Until there are sufficient clusters
 – Take the eigenvector corresponding to the largest unprocessed eigenvalue; zero all components for elements already clustered, and threshold the remaining components to determine which element belongs to this cluster, (you can choose a threshold by clustering the components, or use a fixed threshold.)
 – If all elements are accounted for, there are sufficient clusters

Graph Cuts and Image Segmentation

• Represents image as a graph
• A vertex for each pixel
• Edges between pixels
• Weights on edges reflect similarity (affinity) in:
 – Brightness
 – Color
 – Texture
 – Distance
 – …
• Connectivity:
 – Fully connected: edges between every pair of pixels
 – Partially connected: edges between neighboring pixels
Measuring Affinity

Intensity

\[\text{aff}(x, y) = \exp\left\{ -\frac{1}{2\sigma_i^2} \left\| I(x) - I(y) \right\|^2 \right\} \]

Distance

\[\text{aff}(x, y) = \exp\left\{ -\frac{1}{2\sigma_d^2} \left\| x - y \right\|^2 \right\} \]

color

\[\text{aff}(x, y) = \exp\left\{ -\frac{1}{2\sigma_i^2} \left\| c(x) - c(y) \right\|^2 \right\} \]

Normalized Cuts

- Min cut is not always the best cut
Normalized cuts

- Current criterion evaluates within cluster similarity, but not across cluster difference
- Instead, we’d like to maximize the within cluster similarity compared to the across cluster difference
- Write graph as V, one cluster as A and the other as B

$$\text{Maximize} \quad \frac{\text{assoc}(A,A)}{\text{assoc}(A,V)} + \frac{\text{assoc}(B,B)}{\text{assoc}(B,V)}$$

- i.e. construct A, B such that their within cluster similarity is high compared to their association with the rest of the graph

- Association between two sets of vertices: total connection between the two sets.

$$\text{assoc}(A,B) = \sum_{u\in A, t\in B} w(u,t)$$

$$\text{assoc}(A,V) = \sum_{u\in A, t\in V} w(u,t)$$

$$\text{assoc}(B,V) = \sum_{u\in B, t\in V} w(u,t)$$
Normalize the cuts: compute the cut cost as a fraction of the total edge connections to all nodes in the graph

\[N\text{cut}(A, B) = \frac{\text{cut}(A, B)}{\text{assoc}(A, V)} + \frac{\text{cut}(A, B)}{\text{assoc}(B, V)} \]

Disassociation measure. The smaller the better.

\[\text{Disassoc measure} = \frac{\text{assoc}(A, B) - \text{assoc}(A, A)}{\text{assoc}(A, V)} + \frac{\text{assoc}(B, B) - \text{assoc}(B, B)}{\text{assoc}(B, V)} \]

Total association (similarity) within groups, the bigger better
• By looking for a cut that minimizes $Ncut(A,B)$,
 - Minimize the disassociation between the groups,
 - Maximize the association within group

\[
Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}
\]

\[
= 2 - Nassoc(A,B)
\]

• Minimizing a normalized cut is NP-complete

Normalized cuts

- W: cost matrix: $w(i,j)$
- D: sum of the costs for every vertex
 \[
 D(i,i) = \sum_j W(i,j), \\
 D(i,j) = 0 \quad i \neq j
 \]
- Optimal Normalized cut can be found be solving for y that minimizes

\[
\min_y \frac{y^T(D-W)y}{y^TDy} \quad y \in \{1, -b\} \quad y^TD1 = 0
\]

- NP-complete problem,
- approximate real-valued solution by solving a generalized eigenvalue problem

\[
(D - W)y = \lambda Dy
\]

- Real-valued solution is the second smallest eigenvector
- look for a quantization threshold that maximizes the criterion --- i.e. all components of y above that threshold go to one, all below go to -b
Example - brightness

$$w_{ij} = e^{-\frac{(F(i) - F(j))^2}{\sigma^2_i}} \cdot \begin{cases}
\frac{e^{-\frac{\|X(i) - X(j)\|_2^2}{\sigma_X^2}}}{\sqrt{\sigma^2_X}} & \text{if } \|X(i) - X(j)\|_2 < r \\
0 & \text{otherwise}.
\end{cases}$$

Figure from "Normalized cuts and image segmentation," Shi and Malik, copyright IEEE, 2000
Segmentation using Normalized cuts

Two algorithms:
• Recursive two-way Ncut
 – Use the second smallest eigenvector to obtain a partition to two segments.
 – Recursively apply the algorithm to each partition.
• Simultaneous K-way cut with multiple eigenvectors.
 – Use multiple (n) smallest eigenvectors as n dimensional class indicator for each pixel and apply simple clustering as k-means to obtain n clusters.

Figure from "Normalized cuts and image segmentation," Shi and Malik, copyright IEEE, 2000
Sources

- Forsyth and Ponce, Computer Vision a Modern approach: chapter 14.
- Jianbo Shi and Jitendra Malik “Normalized Cuts and Image Segmentation” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 22 No. 0, August 2000