CS 534: Computer Vision
Segmentation and Perceptual Grouping

Spring 2004
Ahmed Elgammal
Dept of Computer Science
Rutgers University

Where are we?

Image Formation
- Human vision
- Cameras
- Geometric Camera models
- Camera Calibration
- Radiometry
- Color

Early Vision (one image)
- Linear Filters
- Edge Detection
- Texture
- Motion

Early Vision (Multiple images)
- Geometry of Multiple images
- Stereo

Mid-Level Vision:
- Segmentation
 - By clustering
 - By model fitting
 - Probabilistic
 - Tracking

High-Level Vision:
- Model-based vision
- Appearance-based vision
Outlines

• Mid-level vision
• What is segmentation
• Perceptual Grouping
• Segmentation by clustering

Mid-level vision

• Vision as an inference problem:
 – Some observation/measurements (images)
 – A model
 – Objective: what caused this measurement?
• What distinguishes vision from other inference problems?
 – A lot of data.
 – We don’t know which of these data may be useful to solve the inference problem and which may not.
 • Which pixels are useful and which are not?
 • Which edges are useful and which are not?
 • Which texture features are useful and which are not?
Why do these tokens belong together?

Segmentation

• Can we achieve a compact and suggestive representation of the interesting image data that emphasizes the properties that make it interesting
 – Segmentation
 – Grouping
 – Perceptual organization
 – Fitting
• What is interesting and what is not depends on the application
General ideas

- tokens
 - whatever we need to group (pixels, points, surface elements, etc., etc.)
- top down segmentation
 - tokens belong together because they lie on the same object
- bottom up segmentation
 - tokens belong together because they are locally coherent

- Grouping (or clustering)
 - collect together tokens that “belong together”
- Fitting
 - associate a model with tokens
 - issues
 - which model?
 - which token goes to which element?
 - how many elements in the model?

Segmentation

Different problems – same problem: segmentation
- Summarizing a video: segment a video into shots, find coherent segments in the video, find key frames…
- Finding machine parts: finding lines, circles,…
- Finding people: find body segments, find human motion patterns
- Finding buildings from aerial imagery: find polygonal regions, line segments…
- Searching a collection of images: find coherent color, texture regions, shape…
- …
Segmentation

- Segmentation is a big topic

We will look into:

- Segmentation by clustering: Forming image segments:
 - How to decompose the image into “superpixels” image regions that are coherent in color and texture
 - Shape of the region is not that important while segmenting

- Segmentation by model fitting:
 - Fitting lines and curves to edge points:
 - Which points belong to which line, how many lines?
 - What about more complicated models, e.g. fitting a deformable contour!

Segmentation as Clustering

- Objective: Which components of a data set naturally belong together
- This is a clustering problem which can be done in two ways:
- Partitioning – Decomposition:
 - Starting from a large data set how to partition it into pieces given some notion of association between data items
 - Decompose an image into regions that have coherent color and texture
 - Decompose a video sequence into shots
- Grouping
 - Collect sets of data item that make sense together given our notion of association
 - Collect together edge segments that seems to belong to a line
- Question: what is our notion of association?
Grouping and Gestalt

- Gestalt: German for form, whole, group
- Laws of Organization in Perceptual Forms (Gestalt school of psychology) Max Wertheimer 1912-1923

 "there are contexts in which what is happening in the whole cannot be deduced from the characteristics of the separate pieces, but conversely; what happens to a part of the whole is, in clearcut cases, determined by the laws of the inner structure of its whole"

Muller-Layer effect:
This effect arises from some property of the relationships that form the whole rather than from the properties of each separate segment.
Grouping and Gestalt

- Can we write down a series of rules by which image elements would be associated together and interpreted as a group?
- What are the factors that make a set of elements to be grouped?
- Human vision uses these factors in some way.
Parallelism
Symmetry
Continuity
Closure

Familiar configuration: tokens that, when grouped, lead to a familiar object tend to be grouped
Occlusion appears to be important cue in grouping
Illusory contours: tokens are grouped together because they provide a cue to the presence of an occluding object.
• These rules function as explanation only
• Very hard to form algorithms
• When one rule applied and when another?

Segmentation as clustering

• Cluster together (pixels, tokens, etc.) that belong together
• Agglomerative clustering – clustering by merging – bottom-up
 – attach closest to cluster it is closest to
 – repeat
• Divisive clustering – clustering by splitting – top-down
 – split cluster along best boundary
 – repeat

• Point-Cluster distance
 – single-link clustering
 – complete-link clustering
 – group-average clustering
• Dendrograms
 – yield a picture of output as clustering process continues
K-Means

- Choose a fixed number of clusters K
- Each cluster has a center (mean) μ_i
- Choose
 - cluster centers and
 - point-cluster allocations to minimize error

- can’t do this by search, because there are too many possible allocations.

- Algorithm:
 Repeat until centers are unchanged:
 - fix cluster centers; allocate points to closest cluster
 - fix allocation; compute cluster centers

- x could be any set of features for which we can compute a distance (careful about scaling)

\[
\sum \sum \left\{ \left\| x_j - \mu_i \right\|^2 \right\}
\]
K-means clustering using intensity alone and color alone
K=5 segmented image is labeled with cluster means

K-means using color alone, 11 segments
K-means using color alone, 11 segments.

K-means using color and position, 20 segments
Segmentation in image sequences

- Find coherent spatiotemporal regions
- Simple examples:
 - Shot boundary detection.
 - Background subtraction.

Technique: Shot Boundary Detection

- Find the shots in a sequence of video
 - Shot boundaries usually result in big differences between succeeding frames
- Strategy:
 - Compute interframe distances
 - Declare a boundary where these are big
- Possible distances
 - Frame differences
 - Histogram differences
 - Block comparisons
 - Edge differences
- Applications:
 - Representation for movies, or video sequences
 - Find shot boundaries
 - Obtain “most representative” frame
 - Supports search
Technique: Background Subtraction

- If we know what the background looks like, it is easy to identify “interesting bits”
- Applications
 - Person in an office
 - Tracking cars on a road
 - Surveillance

- Approach:
 - Use a moving average to estimate background image
 - Subtract from current frame
 - Large absolute values are interesting pixels
 - Trick: use morphological operations to clean up pixels

\[
B^{n+1} = \alpha F + (1 - \alpha) B^n
\]
\[
B^{n+1} = \alpha F + \sum_i w_i B^{n-i}
\]
Sources

- Forsyth and Ponce, Computer Vision a Modern approach: chapter 14.
- Slides by
 - D. Forsyth @ Berkeley