Outlines

- Density estimation
- Nonparametric kernel density estimation
- Mean shift
- Mean shift clustering
- Mean shift filtering and segmentation
Statistical Background

Density Estimation: Given a sample $S = \{x_i\}_{i=1..N}$ from a distribution obtain an estimate of the density function $\hat{f}(\cdot)$ at any point.

Parametric: Assume a parametric density family $f(.) | \theta$, (ex. $N(\mu, \sigma^2)$) and obtain the best estimator $\hat{\theta}$ of θ

Advantages:
- Efficient
- Robust to noise: robust estimators can be used

Problem with parametric methods
- An incorrectly specified parametric model has a bias that cannot be removed even by large number of samples.

Nonparametric: directly obtain a good estimate $\hat{f}(\cdot)$ of the entire density $f(.)$ from the sample.

Most famous example: Histogram

Kernel Density Estimation

- 1950s + (Fix & Hodges 51, Rosenblatt 56, Parzen 62, Cencov 62)
- Given a set of samples $S = \{x_i\}_{i=1..N}$ we can obtain an estimate for the density at x as:

$$
\hat{f}(x) = \frac{1}{Nh} \sum_{i=1}^{N} K\left(\frac{x - x_i}{h}\right) = \frac{1}{N} \sum_{i=1}^{N} K_h(x - x_i)
$$
where \(K_h(t) = K(t/h)/h \) called kernel function (window function)

\(h \): scale or bandwidth

\(K \) satisfies certain conditions, e.g.:

\[
\int K_h(x) \, dx = 1
\]

\(K_h(x) \geq 0 \)

Kernel Estimation

- A variety of kernel shapes with different properties.
- Gaussian kernel is typically used for its continuity and differentiability.

- Multivariate case: Kernel Product
 Use same kernel function with different bandwidth \(h \) for each dimension.
- General form: avoid to store all the samples

\[
\hat{f}(x) = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{d} K_{h_j}(x^j - x_i^j)
\]

\[
\hat{f}(x) = \sum_{i=1}^{N} \alpha_i K_h(x - x_i)
\]
Kernel Density Estimation

Advantages:
- Converge to any density shape with sufficient samples. asymptotically the estimate converges to any density.
- No need for model specification.
- Unlike histograms, density estimates are smooth, continuous and differentiable.
- Easily generalize to higher dimensions.
- All other parametric/nonparametric density estimation methods, e.g., histograms, are asymptotically kernel methods.
- In computer vision, the densities are multivariate and multimodal with irregular cluster shapes.

Example: color clusters
- Cluster shapes are irregular
- Cluster boundaries are not well defined.

From D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis,"
Conversion - KDE

Estimation using Gaussian Kernel

Estimation using Uniform Kernel
Scale selection

- Important problem. Large literature.
- Small h results in ragged densities.
- Large h results in over smoothing.
- Best choice for h depends on the number of samples:
 - small n, wide kernels
 - large n, Narrow kernels
 - $\lim_{n \to \infty} h(n) = 0$

Optimal scale

- Optimal kernel and optimal scale can be achieved by minimizing the mean integrated square error – if we know the density!
- Normal reference rule:
 $$h^{opt} = \left(\frac{4}{3}\right)^{1/5} \sigma \cdot n^{-1/5} = 1.06\hat{\sigma} \cdot n^{-1/5}$$
Scale selection

Mean Shift

- Given a sample $S = \{s_i : s_i \in \mathbb{R}^n\}$ and a kernel K, the sample mean using K at point x:

$$m(x) = \frac{\sum_i s_i K(s_i - x)}{\sum_i K(s_i - x)}$$

- Iteration of the form $x \leftarrow m(x)$ will lead to the density local mode.
- Let x is the center of the window.
 - Iterate until convergence.
 - Compute the sample mean $m(x)$ from the samples inside the window.
 - Replace x with $m(x)$

Fukunaga and Hostler 1975 introduced the mean shift as the difference $m(x) - x$ using a flat kernel.

Cheng 1995 generalized the definition using general kernels and weighted data:

$$m(x) = \frac{\sum_i s_i K(s_i - x)w(s_i)}{\sum_i K(s_i - x)w(s_i)}$$

Recently popularized by D. Comaniciu and P. Meer 99+

Applications: Clustering [Cheng,Fu 85], image filtering, segmentation [Meer 99] and tracking [Meer 00].
Mean Shift

- Iterations of the form $x \leftarrow m(x)$ are called mean shift algorithm.
- If K is a Gaussian (e.g.) and the density estimate using K is
 \[\hat{P}(x) = C \sum_i K(x - s_i)w(s_i) \]
- Using Gaussian Kernel $K_\sigma(x)$, the derivative is $K'_\sigma(x) = \frac{x}{\sigma^2}K_\sigma(x)$
 we can show that:
 \[\nabla \frac{\hat{P}(x)}{\hat{P}(x)} = m(x) - x \]
- the mean shift is in the gradient direction of the density estimate.

Mean Shift

- The mean shift is in the gradient direction of the density estimate.
- Successive iterations would converge to a local maxima of the density, i.e., a stationary point: $m(x) = x$.
- Mean shift is a steepest-ascent like procedure with variable size steps that leads to fast convergence “well-adjusted steepest ascent”.
Mean shift and Image Filtering

Discontinuity preserving smoothing

- Recall, average or Gaussian filters blur images and do not preserve region boundaries.

Mean shift application:

- Represent each pixel \(x \) as spatial location \(x^s \) and range \(x^r \) (color, intensity)
- Look for modes in the joint spatial-range space
- Use a product of two kernels: a spatial kernel with bandwidth \(h_s \) and a range kernel with bandwidth \(h_r \)

\[
K_{h_s,h_r} = k_{h_s}(x^s)k_{h_r}(x^r)
\]

- Algorithm:
 - For each pixel \(x^s(x^r, x^r') \)
 - apply mean shift until conversion. Let the conversion point be \((x^s', x^r') \)
 - Assign \(z_i = (x^s', x^r') \) as filter output
- Results: see the paper.
Mean Shift and Segmentation

- Similar to filtering but group clusters from the filtered image: group together all \(z_i \) which are closer than \(h_s \) in the spatial domain and closer than \(h_r \) in the range domain.

Let \(x_i \) and \(z_i, i = 1, \ldots, n \) be the \(d \)-dimensional input and filtered image pixels in the joint spatial-range domain and \(L_i \) the label of the \(i \)th pixel in the segmented image.

1. Run the mean shift filtering procedure for the image and store all the information about the \(d \)-dimensional convergence point in \(z_i \), i.e., \(z_i = y_{ic} \).
2. Delineate in the joint domain the clusters \(\{ C_{ip} \}_{p=1}^{m} \) by grouping together all \(z_i \) which are closer than \(h_s \) in the spatial domain and \(h_r \) in the range domain, i.e., concatenate the basins of attraction of the corresponding convergence points.
3. For each \(i = 1, \ldots, n \), assign \(L_i = \{ p \mid z_i \in C_{i_p} \} \).
4. Optional: Eliminate spatial regions containing less than \(M \) pixels.
Meanshift tracking

Appearance-Based Tracking

- current frame + previous location
- likelihood over object location
- current location
- Mode-Seeking
 - (e.g. mean-shift, Lucas-Kanade; particle filtering)
 - appearance model
 - (e.g. image template, or
 - color, intensity, edge histograms)

Sources

- Slides by D. Comaniciu