CS534 Introduction to Computer Vision

Linear Filters

Ahmed Elgammal
Dept. of Computer Science
Rutgers University

Outlines

- What are Filters
- Linear Filters
- Convolution operation
- Properties of Linear Filters
- Application of filters
- Nonlinear Filter
- Normalized Correlation and finding patterns in images

Sources:
- Forsyth and Ponce “Computer Vision a Modern approach” Chapter 4
- Burger and Burge “Digital Image Processing” Chapter 6
Digital image

- Assume we use a gray-level image
- Digital image: a two-dimensional light intensity function \(f(x,y) \) where \(x \) and \(y \) denote spatial coordinates, the value of \(f \) at any point is proportional to the brightness (gray level) of the image at that point.
- A digital image:
 - is discretized in the spatial domain
 - Is discretized in the brightness domain.

What operations can we perform on pixels?
- Point operations
- Filters
Point Operations

- Point Operations perform a mapping of the pixel values without changing the size, geometry, or local structure of the image.
- Each new pixel value $I'(u,v)$ depends on the previous value $I(u,v)$ at the same position and on a mapping function $f(.)$.
- The function $f(.)$ is independent of the coordinates.
- Such operation is called “homogeneous point operations”

\[
\begin{align*}
\alpha' & \leftarrow f(\alpha) \\
I'(u,v) & \leftarrow f(I(u,v))
\end{align*}
\]

Example of homogeneous point operations:
- Modifying image brightness or contrast
- Applying arbitrary intensity transformation (curves)
- Quantizing (posterizing) images
- Global thresholding
- Gamma correction
- Color transformations
What is a Filter

- Point operations are limited (why)
- They cannot accomplish tasks like sharpening or smoothing,
- We need a function that involves the intensities (color) in the neighborhood of each pixel

Smoothing an image by averaging

- Replace each pixel by the average of its neighboring pixels
- Assume a 3x3 neighborhood:

\[
I'(u, v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}
\]
In general a filter applies a function over the values of a small neighborhood of pixels to compute the result.

The size of the filter = the size of the neighborhood: 3x3, 5x5, 7x7, ..., 21x21, ...

The shape of the filter region is not necessarily square, can be a rectangle, a circle...

Filters can be linear or nonlinear.

\[
I'(u, v) \leftarrow \frac{P_0 + P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8}{9}
\]

\[
I'(u, v) \leftarrow \frac{1}{9} \left[I(u-1, v-1) + I(u, v-1) + I(u+1, v-1) + I(u-1, v) + I(u, v) + I(u+1, v) + I(u-1, v+1) + I(u, v+1) + I(u+1, v+1) \right]
\]

\[
I'(u, v) \leftarrow \frac{1}{9} \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i, v+j)
\]
Linear Filters: convolution

\[I'(u, v) \leftarrow \sum_{(i,j) \in R_H} I(u + i, v + j) \cdot H(i, j) \]

\[I'(u, v) \leftarrow \sum_{i=-1}^{i+1} \sum_{j=-1}^{j+1} I(u + i, v + j) \cdot H(i, j) \]

Averaging filter

\[I'(u, v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9} \]

\[I'(u, v) \leftarrow \frac{1}{9} \cdot \left[I(u-1, v-1) + I(u, v-1) + I(u+1, v-1) + I(u-1, v) + I(u, v) + I(u+1, v) + I(u-1, v+1) + I(u, v+1) + I(u+1, v+1) \right] \]

\[H(i, j) = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

\[I'(u, v) \leftarrow \sum_{i=-1}^{i+1} \sum_{j=-1}^{j+1} I(u + i, v + j) \cdot H(i, j) \]
Mathematical Properties of Linear Convolution

- For any 2D discrete signal, convolution is defined as:

\[I'(u, v) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(u-i, v-j) \cdot H(i, j) \]

\[I' = I \ast H \]

Properties

- Commutativity

\[I \ast H = H \ast I \]

- Linearity

\[(s \cdot I) \ast H = I \ast (s \cdot H) = s \cdot (I \ast H) \]

\[(I_1 + I_2) \ast H = (I_1 \ast H) + (I_2 \ast H) \]

(notice) \[(b + I) \ast H \neq b + (I \ast H) \]

- Associativity

\[A \ast (B \ast C) = (A \ast B) \ast C \]
Properties

- Separability

\[H = H_1 * H_2 * \ldots * H_n \]
\[I * H = I * (H_1 * H_2 * \ldots * H_n) \]
\[= \left(\ldots (I * H_1) * H_2 \right) * \ldots * H_n \]

Types of Linear Filters

(a)
(b)
(c)

\[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \]

\[\begin{array}{cccccc}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 3 & 5 & 3 & 1 & 0 \\
2 & 5 & 9 & 5 & 2 & 0 \\
1 & 3 & 5 & 3 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
\end{array} \]

\[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
-1 & 2 & 1 & 6 & 2 & -1 \\
0 & -1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\end{array} \]
Smoothing by Averaging vs. Gaussian

Flat kernel: all weights equal $1/N$

- Smoothing with an average actually doesn’t compare at all well with a defocussed lens
 - Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the averaging process would give a little square.

- A Gaussian gives a good model of a fuzzy blob

Smoothing with a Gaussian
An Isotropic Gaussian

- The picture shows a smoothing kernel proportional to

\[\exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

...
Gaussian smoothing

- Advantages of Gaussian filtering
 - rotationally symmetric (for large filters)
 - filter weights decrease monotonically from central peak, giving most weight to central pixels
 - Simple and intuitive relationship between size of σ and the smoothing.
 - The Gaussian is separable:

$$e^{-\frac{(x^2+y^2)}{2\sigma^2}} = e^{-\frac{x^2}{2\sigma^2}} \ast e^{-\frac{y^2}{2\sigma^2}}$$

Advantage of separability

- First convolve the image with a one dimensional horizontal filter
- Then convolve the result of the first convolution with a one dimensional vertical filter
- For a $k \times k$ Gaussian filter, 2D convolution requires k^2 operations per pixel
- But using the separable filters, we reduce this to $2k$ operations per pixel.
Separability

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 3 & 3 \\
3 & 5 & 5 \\
4 & 4 & 6 \\
\end{array}
\quad \begin{array}{ccc}
11 & & \\
18 & & \\
18 & \\
\end{array}
\quad \begin{array}{ccc}
1 & 1 & \\
2 & 1 & \\
1 & 1 & \\
\end{array}
\quad \begin{array}{ccc}
11 & & \\
18 & & \\
65 & \\
\end{array}
\quad \begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array}
\quad = 2 + 6 + 3 = 11 \\
\begin{array}{ccc}
2 & 3 & 3 \\
3 & 5 & 5 \\
4 & 4 & 6 \\
\end{array}
\quad = 6 + 20 + 10 = 36 \\
\quad = 4 + 8 + 6 = 18 \\
\quad 65
\]

Advantages of Gaussians

- Convolution of a Gaussian with itself is another Gaussian
 - so we can first smooth an image with a small Gaussian
 - then, we convolve that smoothed image with another small Gaussian and the result is equivalent to smoother the original image with a larger Gaussian.
- If we smooth an image with a Gaussian having sd \(\sigma \) twice, then we get the same result as smoothing the image with a Gaussian having standard deviation \((2\sigma)^{1/2} \)
Noise

- Simplest noise model
 - independent stationary additive Gaussian noise
 - the noise value at each pixel is given by an independent draw from the same normal probability distribution

\[
 f_{\text{observed}}(x, y) = f(x, y) + N(0, \sigma^2)
\]

- Issues
 - this model allows noise values that could be greater than maximum camera output or less than zero
 - for small standard deviations, this isn’t too much of a problem - it’s a fairly good model
 - independence may not be justified (e.g. damage to lens)
 - may not be stationary (e.g. thermal gradients in the ccd)

\[
 \text{sigma}=1
\]
The response of a linear filter to noise

- Assume stationary independent additive Gaussian noise with zero mean (non-zero mean is easily dealt with)

- **Mean:**
 - output is a weighted sum of inputs
 - so we want mean of a weighted sum of zero mean normal random variables
 - must be zero

- **Variance:**
 - recall
 - variance of a sum of random variables is sum of their variances
 - variance of constant times random variable is constant^2 times variance
 - then if σ^2 is noise variance and kernel is K, variance of response is

\[
\sigma^2 \sum_{w,y} K_{w,y}^2
\]

\[
N'(0, \sigma'^2)
\]
The response of a linear filter to noise

\[f_{\text{observed}}(x, y) = f(x, y) + N(0, \sigma^2) \]

\[g * f_{\text{observed}} = g * f + g * N(0, \sigma^2) \]

\[\downarrow \]

\[N'(0, \sigma'^2) \]

\[\sigma'^2 = \sigma^2 \sum_{u,v} K_{u,v}^2 \]

This can magnify or reduce the variance of the noise based on \(\sum_{u,v} K_{u,v}^2 \)

If \(\sum_{u,v} K_{u,v} = 1 \Rightarrow \sum_{u,v} K_{u,v}^2 \leq 1 \) This reduces noise variance (assume positive coefficients)
Linear Filters: convolution

Convolution as a Dot Product

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector
- Convoluting an image with a filter is equivalent to taking the dot product of the filter with each image window.
filters and finding patterns

- Largest value when the vector representing the image is parallel to the vector representing the filter.
- Filter responds most strongly at image windows that looks like the filter.
- Filter responds stronger to brighter regions! (drawback)

Insight:
- filters look like the effects they are intended to find
- filters find effects they look like

Ex: Derivative of Gaussian used in edge detection looks like edges

Normalized Correlation

- Convolution with a filter can be used to find templates in the image.
- Normalized correlation output is filter output, divided by root sum of squares of values over which filter lies.
- Consider template (filter) M and image window N:

$$ C = \frac{\sum_{i} \sum_{j} M(i,j)N(i,j)}{\sqrt{\left(\sum_{i} \sum_{j} M(i,j)^2 \sum_{i} \sum_{j} N(i,j)^2\right)^{1/2}}} $$
Normalized Correlation

\[C = \frac{\sum_{i,j} M(i,j)N(i,j)}{\left(\sum_{i,j} M(i,j)^2 \sum_{i,j} N(i,j)^2\right)^{1/2}} \]

- This correlation measure takes on values in the range \([0,1]\)
- it is 1 if and only if \(N = cM\) for some constant \(c\)
- so \(N\) can be uniformly brighter or darker than the template, \(M\), and the correlation will still be high.
- The first term in the denominator, \(\sum M^2\) depends only on the template, and can be ignored
- The second term in the denominator, \(\sum N^2\) can be eliminated if we first normalize the grey levels of \(N\) so that their total value is the same as that of \(M\) - just scale each pixel in \(N\) by \(\sum M / \sum N\)

Positive responses

Zero mean image, -1:1 scale

Zero mean image, -max:max scale
Positive responses

Zero mean image, -1:1 scale

Zero mean image, -max:max scale

Example of a biologically motivated recognition system
A convolutional neural network, LeNet; the layers filter, subsample, filter, subsample, and finally classify based on outputs of this process.

Figure from “Gradient-Based Learning Applied to Document Recognition”, Y. Lecun et al Proc. IEEE, 1998 copyright 1998, IEEE

Nonlinear Filters

- Linear filters have a disadvantage when used for smoothing or removing noise: all image structures are blurred, the quality of the image is reduced.
- Examples of nonlinear filters:
 - Minimum and Maximum filters
 \[
 I'(u,v) \leftarrow \min \{ I(u+i,v+j) \mid (i,j) \in R \} \\
 I'(u,v) \leftarrow \max \{ I(u+i,v+j) \mid (i,j) \in R \}
 \]

 (a) width of filter
 (b)
 (c)
Median Filter

- Much better in removing noise and keeping the structures

\[
I'(u, v) \leftarrow \text{median}\{I(u+i, v+j) \mid (i, j) \in R\}
\]
Weighted median filter

\[
\begin{align*}
I(u,v) & = \begin{bmatrix} 3 & 7 & 2 \\ 1 & 0 & 0 \\ 9 & 5 & 8 \end{bmatrix} \\
W(i,j) & = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}
\end{align*}
\]