Cameras and Image Formation

Ahmed Elgammal
Dept of Computer Science
Rutgers University

Outlines

Cameras, lenses, and image formation
Images are two-dimensional patterns of brightness values. They are formed by the projection of 3D objects.

Introduction to Imaging and Multimedia

Animal eye: a long time ago.

Photographic camera: Niepce, 1816.

Pinhole cameras

- Abstract camera model - box with a small hole in it
- Each point in the image plane collects light from a cone of rays.
- If the pinhole is reduced to a single point (impossible) exactly one ray would pass through each point.
Introduction to Imaging and Multimedia

Lensless imaging systems - pinhole optics

- Pinhole optics focuses images
 - with infinite depth of field
- Smaller the pinhole
 - better the focus
 - less the light energy from any single point

Pinhole too big - many directions are averaged, blurring the image
Pinhole too small - diffraction effects blur the image
Generally, pinhole cameras are dark, because a very small set of rays from a particular point hits the screen.
Diffraction

- Two disadvantages to pinhole systems
- Diffraction
 - a straight line
 - it is scattered in many directions
 - process is called diffraction and is a quantum effect
- Human vision
 - at high light levels, pupil (aperture) is small and blurring is due to diffraction
 - at low light levels, pupil is open and blurring is due to lens imperfections

\[\theta = \frac{\lambda}{D} \]

Diffraction and pinhole optics

2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred. (B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Rychener, 1938.
Pinhole Perspective

- Abstract camera model - box with a small hole in it
- Assume a single point pinhole:
 - Pinhole (central) perspective projection (Brunelleschi 15th Century)
 - Extremely simple model for imaging geometry
 - Doesn’t strictly apply
 - Mathematically convenient – acceptable approximation.
 - Concepts: image plane, virtual image plane
 - Moving the image plane merely scales the image.

Distant objects are smaller
Parallel lines meet
\[y = -f \frac{Y}{Z} \quad x = -f \frac{X}{Z} \]

\[
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix} = -\frac{1}{z} \begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]
The reason for lenses

- Because of pinhole cameras limitations, we do need lenses
- With a lens, diverging rays from a scene point are converged back to an image point

Kepler’s retinal theory

Even though light rays from “many” surface points hit the same point on the lens, they approach the lens from different directions.

Therefore, they are refracted in different directions - separated by the lens
Snell’s law

- Willebrord Snellius (Snel) 1621
- Descartes’ law !, Earlier known by Ibn Sahl 940-1000!, earlier by Ptolemy!
- If ϕ is the angle of incidence and ϕ' is the angle of refraction then
 \[n \sin \phi = n' \sin \phi' \]
 Where n and n' are the refractive indices of the two media
- Refractive index is the ratio of speed of light in a vacuum to speed of light in the medium

Applying Snell’s Law twice

- Pass light into and out of a prism (symmetric piece of glass)
 - By combining many infinitesimally small prisms we form a convex lens that will bring all of the refracted rays incident from a given surface point into coincidence at a point behind the lens
 - If the image or film plane is placed that distance behind the lens, then that point will be in focus
 - If the image plane is in front of or behind that ideal location, the image of that point will be out of focus
 - Check out: Fresnel lens
The structure of eyes - compound eyes

- Many (small) animals have compound eyes
 - each photoreceptor has its own lens
 - images seen by these eyes are equally sharp in all directions
 - images seen by these eyes are equally “bright” in all directions when viewing a field of constant brightness
 - examples: flies and other insects
- But these eyes do not “scale” well biologically

Thin lenses

- The optical behavior is determined by:
 - optical axis going through the lens center \(O \) and perpendicular to the lens center plane
 - the left and right focus (\(F_l \) and \(F_r \)) located a distance \(f \), called the focal length, from the lens center
Thin lenses

- The shape of the lens is designed so that all rays parallel to the optical axis on one side are focused by the lens on the other side:
 - Any ray entering the lens parallel to the optical axis on one side goes through the focus on the other side.
 - Any ray entering the lens from the focus on one side, emerges parallel to the optical axis on the other side.
Thin-lens equation

- relates the distance between the point being viewed and the lens to the distance between the lens and the ideal image (where the rays from that point are brought into focus by the lens)
 - Let P be a point being viewed that is not too far from the optical axis.
 - Z + f is the distance of P from the lens along the optical axis
 - The thin lens focuses all the rays from P onto the same point, the image point, p

Thin-lens equation

\[\frac{1}{Z'} + \frac{1}{z'} = \frac{1}{f} \]

- p can be determined by intersecting two known rays, PQ and PR.
 - PQ is parallel to the optical axis, so it must be refracted to pass through \(F_r \).
 - PR passes through the left focus, so emerges parallel to the optical axis.
- Note two pairs of similar triangles
 - \(PF_S \leftrightarrow ROF_1 \) and \(psF_r \leftrightarrow QOF_r \)

\[\frac{1}{Z'} + \frac{1}{z'} = \frac{1}{f} \]

\[\frac{1}{Z + f} + \frac{1}{z + f} = \frac{1}{f} \]
Thin-lens equation

\[\frac{1}{Z'} + \frac{1}{z'} = \frac{1}{f} \]

- Notice that the distance behind the lens, \(z' \), at which a point, \(P \), is brought into focus depends on \(Z' \), the distance of that point from the lens
 - familiar to us from rotating the focus ring of any camera.
- In real lenses, system is designed so that all points within a given range of distances \([Z_1, Z_2] \) are brought into focus at the same distance behind the lens center.
 - This is called the depth of field of the lens.

Note:
- as \(Z' \) gets large, \(z' \) approaches \(f \)
- as \(Z' \) approaches \(f \), \(z' \) approaches infinity
Optical power and accommodation

- Optical power of a lens - how strongly the lens bends the incoming rays
 - short focal length lens bends rays significantly
 - it images a point source at infinity at distance \(f \) behind the lens. The smaller \(f \), the more the rays must be bent to bring them into focus sooner.
 - optical power is \(1/f \), measured in meters. The unit is called the diopter
 - Human vision: when viewing faraway objects the distance from the lens to the retina is .017m. So the optical power of the eye is 58.8 diopters
Accommodation

- How does the human eye bring nearby points into focus on the retina?
 - by increasing the power of the lens
 - muscles attached to the lens change its shape to change the lens power
 - accommodation: adjusting the focal length of the lens
 - bringing points that are nearby into focus causes faraway points to go out of focus
 - depth-of-field: range of distances in focus

- Physical cameras - mechanically change the distance between the lens and the image plane
Accommodation

Sources at > 1 meter are imaged at the same distance.
Sources closer than 1 m are imaged at different distances.

Real lenses

- Thick lenses
Lens imperfection

- Lens imperfections might cause rays not to intersect at a point
 - deviations in shape from the ideal lens
 - material imperfections that might cause the refractive index to vary within the lens
- Scattering at the lens surface
 - Some light entering the lens system is reflected off each surface it encounters (Fresnel’s law gives details)
 - Machines: coat the lens, interior
 - Humans: live with it (various scattering phenomena are visible in the human eye)
- Geometric aberrations.
- Chromatic aberrations.

Radial Distortion

- Barrel: image magnification decreases with distance from the optical axis.
- Pincushion: image magnification increases with the distance from the optical axis.
Spherical aberration

Complications of color

- Spectral composition of light
 - Newton’s original prism experiment
 - Light decomposed into its spectral components

4.1 NEWTON’S SUMMARY DRAWING of his experiments with light. Using a point source of light and a prism, Newton separated sunlight into its fundamental components. By reconverging the rays, he also showed that the decomposition is reversible.
Complications of color

• Why does the prism separate the light into its spectral components?
 - prism bends different wavelengths of light by different amounts
 - refractive index is a function of wavelength
 - shorter wavelengths are refracted more strongly than longer wavelengths

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Color (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>Red</td>
</tr>
<tr>
<td>610</td>
<td>Orange</td>
</tr>
<tr>
<td>580</td>
<td>Yellow</td>
</tr>
<tr>
<td>540</td>
<td>Green</td>
</tr>
<tr>
<td>480</td>
<td>Blue</td>
</tr>
<tr>
<td>400</td>
<td>Violet</td>
</tr>
</tbody>
</table>

* - viewed in isolation

Complications of color

4.4 THE SPECTRAL POWER DISTRIBUTION of two important light sources are shown: (left) blue skylight and (right) a tungsten bulb.
Chromatic aberration

- Chromatic aberration
 - The prism effect of focusing different wavelengths of light from the same point source at different distances behind the lens
 - When incident light is a mixture of wavelengths, we can observe a chromatic fringe at edges
 - Accommodation can bring any wavelength into good focus, but not all simultaneously
 - Human visual system has other mechanisms for reducing chromatic aberration (adapt to it)
 - Color cameras have similar problems
Lens systems

- Aberrations can be minimized by aligning several simple lenses (compound lenses)

Vignetting

- Vignetting effect in a two-lens system. The shaded part of the beam never reaches the second lens.
- Result: brightness drops at image periphery.

Sensing

Milestones:
First Photograph: Niepce 1816
Daguerreotypes (1839)
Photographic Film (Eastman, 1889)
Cinema (Lumière Brothers, 1895)
Color Photography (Lumière Brothers, 1908)
Television (Baird, Farnsworth, Zworykin, 1920s)

"Boulevard du Temple", taken by Daguerre in 1838 in Paris
First person in a photograph. 10 mins exposure
CCD & CMOS

- CCD Cameras (Charge Couple Device) (1970)
 - Accumulate signal charge in each pixel proportional to the local illumination intensity
 - CCD transfers each pixel’s charge packet sequentially to convert its charge to a voltage
- CMOS Cameras (Complementary Metal Oxide Silicon)
 - Accumulate signal charge in each pixel proportional to the local illumination intensity
 - The charge-to-voltage conversion takes place in each pixel

CCD cameras

- Charge-coupled device CCD
- Image is read one row at a time
- This process is repeated several times per second (frame rate)
Check out: CCD vs. CMOS: Facts and Fiction by Dave Litwiller, in Photonics Spectra, January 2001
Light falling on an imaging sensor is usually picked up by an active sensing area integrated for the duration of the exposure, usually expressed as the shutter speed in a fraction of a second, \(\frac{1}{25} \), \(\frac{1}{60} \), \(\frac{1}{30} \), and then passed to a set of sense amplifiers. The two main kinds of sensor used in digital still and video cameras today are charge-coupled device (CCD) and complementary metal oxide on silicon (CMOS).

In a CCD, photons are accumulated in each active well during the exposure time. Then, in a transfer phase, the charges are transferred from well to well in a kind of "bucket brigade" until they are deposited at the sense amplifiers, which amplify the signal and pass it to an analog-to-digital converter (ADC).

Older CCD sensors were prone to blooming when charges from one overexposed pixel spilled into adjacent ones, but most newer CCDs have anti-blooming technology ("troughs" into which the excess charge can spill).

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a photodetector, which can be selectively gated to control exposure duration, and locally amplified before being read out using a multiplexing scheme. Traditionally, CCD sensors outperformed CMOS in quality sensitive applications, such as digital SLRs, while CMOS was better for low-power applications, but today CMOS is used in most digital cameras.

The main factors affecting the performance of a digital image sensor are the shutter speed, sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality).

In digital still cameras, a complete frame is captured and then read out sequentially at once. However, if video is being captured, a rolling shutter, which exposes and transfers each line separately, is often used. In older video cameras, the even fields (lines) were scanned first, followed by the odd fields, in a process that is called interlacing.
Three concepts from film-based cameras:
- Aperture
- Shutter Speed
- ISO: film density
Three concepts from film-based cameras:
- Aperture
- Shutter Speed
- ISO: film density

Image from: http://www.cambridgeincolour.com
• Several Parameters for a Digital camera
 – Mechanical and/or Electronic shutter
 – Sampling pitch: the physical spacing between adjacent sensors (typically in μm)
 • Small sampling pitch -> higher sampling density -> higher resolution. But also implies smaller area per sensor -> less light sensitivity + more noise
 – Fill Factor: the active sensing area size as a fraction of the available sensing area
 – Chip Size: larger chip size is preferred since each sensor can be more photo-sensitive, however more expensive.

– Analog gain: sensed signal is amplified
 • Automatic gain control: amplification is a function of the exposure
 • Manual setting: digital ISO setting
 – Higher ISO: more gain which implies better under low light condition.
 – However more noise (amplifies the sensor noise)
 – ADC resolution: Analog to digital conversion: how many bits are used to quantize the received signal at each sensor unit
 • 16 bits for RAW format
 • 8 bits for JPEG
 • Less bits: quantization error
 • More bits increases the noise (effect of input noise)
Color cameras

- Two types of color cameras
 - Single CCD array
 - in front of each CCD element is a filter - red, green or blue
 - color values at each pixel are obtained by hardware interpolation
 - subject to artifacts
 - lower intensity quality than a monochromatic camera
 - similar to human vision
 - 3 CCD arrays packed together, each sensitive to different wavelengths of light

3 CCD cameras

[Image of 3 CCD cameras setup]
Sources

- Computer Vision a Modern approach: 1.1, 1.2, 1.4
- Burger and Burge, Digital Image Processing Ch 2
- Wandell, Foundations of Vision
- Slides by:
 - D. Forsyth @UC Berkeley
 - J. Ponce @UIUC
 - L. Davis @UMD