Modeling Computation
Language and Grammars

• Natural Languages: English, French, German,…
• Programming Languages: Pascal, C, Java, …
• Grammar is used to generate sentences from basic words of the language
• Formal language: Generated by grammars.
• Why we study Formal languages ?
 – To model computation.. We will see the connection later.
 – Fundamental for compiler and study of programming languages
 – Natural language understanding, machine translation, human computer interaction.
What's the difference between these sentences:

Colorless green ideas sleep furiously.

Frankly walking pounded.

- Could a computer program distinguish a grammatical sentence from an ungrammatical one?

- Two answers: Yes and no.

- Yes: Linguists have shown that a remarkable amount of the structure of natural language can be captured with formal rules. Computer programs have been written that do a remarkably good job of recognizing valid sentences.

- No: But not all of it. Part of it seems tied to actually understanding the meaning, which is beyond us.
Syntax and Semantics
• Syntax: form of the sentence
• Semantics: the meaning of the sentence

The frog writes neatly
• Valid sentence grammatically (syntax)
• Noun phrase “the frog”
 – Made up of article “the” and noun “frog”
• Verb phrase “writes neatly”
 – Made up of the verb “writes” and adverb “neatly”.

Swim quickly mathematics
• Is not a valid sentence
• Syntax for natural languages is extremely complicated

• Formal Language: specified by a well-defined set of rules of syntax (Grammar)

• The use of grammar helps to answer the following questions:
 – How can we determine whether a combination or words is a valid sentence
 – How can we generate the valid sentences of a formal language.
Example of a formal language:

1. **sentence**: noun phrase followed by **verb phrase**

2. **noun phrase**: article followed by adjective followed by noun

3. OR **article** followed by noun

4. **verb phrase**: verb followed by **adverb**

5. OR verb

6. article: *a*

7. OR article: *the*

8. adjective: *large*

9. OR **hungry**

10. noun: *rabbit*

11. OR **mathematician**

12. verb: *eats*

13. OR **hops**

14. adverb: *quickly*

15. OR **wildly**
• We can use these rules to generate valid sentences using a series of replacements of the bold terms:

• **sentence**
• **noun phrase** **verb phrase**
• **article** **adjective** **noun** **verb** **phrase**
• **article** **adjective** **noun** **verb** **adverb**
• **the** **adjective** **noun** **verb** **adverb**
• **the large** **noun** **verb** **adverb**
• **the large rabbit** **verb** **adverb**
• **the large rabbit hops** **adverb**
• the large rabbit hops quickly

• Other valid sentences are:
 – *A hungry mathematician eats widely*
 – *A large mathematician hops*
 – *The rabbit eats quickly*
• Invalid: *the quickly eats mathematician*
Definitions

• A “vocabulary” (alphabet) is a finite, nonempty set of elements called symbols
• A “sentence” (word) is a string of finite length of elements of V
• The “empty/null string” is denoted by lambda λ (zero length string)
• V*: the set of all sentences (words) defined over V
• A “language” is a subset of V*. (Kind of like a predicate on strings.)

• Vocabulary (alphabet) consists of terminals and nonterminals
• Terminals T: elements that can not be replaced by other symbols
• Nonterminals N: elements that can be replaced by other symbols.
• In our previous example:

• $V = \{ \text{sentence, noun phrase, verb phrase, article, adjective, noun, verb, adverb}, a, the, large, hungry, rabbit, mathematician, eats, hops, quickly, wildly \}$

• $T = \{ a, the, large, hungry, rabbit, mathematician, eats, hops, quickly, wildly \}$

• $N = \{ \text{sentence, noun phrase, verb phrase, article, adjective, noun, verb, adverb} \}$
Phrase-structure grammar

A phrase-structured grammar
G = (V, T, S, P) consists of:
V: vocabulary
T : a subset of V called terminal symbols
N=V-T: non-terminals
S in V: start symbol
P: productions (set of pairs of strings)
Every production in P must contain at least one nonterminal on its left side.
Example:

- $G = (V, T, S, P)$
- $V = \{ a, b, A, B, S \}$
- $T = \{ a, b \}$
- S is the start symbol
- $P = \{ S \rightarrow ABa, A \rightarrow BB, B \rightarrow ab, AB \rightarrow b \}$

What words can G generate?
Let \(w_0 = l z_0 r \)
Let \(w_1 = l z_1 r \)

• if \(z_0 \rightarrow z_1 \) is a production of \(G \)
then \(w_0 \Rightarrow w_1 \) (\(w_1 \) is “directly derivable” from \(w_0 \))

• \(w_0, w_1, ..., w_n \) are strings over \(V \) s.t.
\(w_0 \Rightarrow w_1 \Rightarrow w_2, ..., w_{\{n-1\}} \Rightarrow w_n \)
then we say that \(w_n \) is “derivable” from \(w_0 \),
we write \(w_0 \Rightarrow^* w_n \),

• The sequence of steps used is a “derivation”.

Ex: Aaba is directly derivable from ABa
abababa is derivable from ABa

• “Language generated” from a grammar \(G \),
denoted by \(L(G) \):
\(L(G) = \{ \ w \text{ in } T^* \ | \ S \Rightarrow^* w \ \} \)