
Mobile Cyber-Physical Systems for Smart Cities
Desheng Zhang

Department of Computer Science, Rutgers University, USA
desheng.zhang@cs.rutgers.edu

ABSTRACT
Nowadays, rapid urbanization leads to severe urban challenges, e.g.,
congestion and energy consumption, related to human mobility. To
address them, it is essential to (i) measure and predict human mobil-
ity based on data from urban infrastructure, and (ii) intervene and
alter human mobility with novel services on urban infrastructure,
i.e., a Cyber-Physical System approach. However, both existing
mobility models and resultant services are built upon the interac-
tion of residents with single infrastructure (e.g., taxis) or multiple
infrastructures from single domains (e.g., transportation), which are
limited by their homogeneous nature. Fortunately, cross-domain
infrastructures and their data from the latest infrastructure expan-
sion enable us to explore real-time interactions between residents
and infrastructures across domains. In this talk, we will introduce
some of our recent work under cross-domain interactions.

KEYWORDS
Cyber-Physical Systems, Human Mobility, Smart Cities
ACM Reference Format:
Desheng Zhang. 2020. Mobile Cyber-Physical Systems for Smart Cities. In
Companion Proceedings of the Web Conference 2020 (WWW ’20 Companion),
April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3366424.3382121

1 INTRODUCTION
Given the rapid urbanization, the interactions of urban residents
and infrastructures (e.g., transportation and telecommunication)
have been becoming ubiquitous in urban environments[33]. Under-
standing and utilizing such ubiquitous interactions would be key to
show various urban phenomena, e.g., traffic congestion, air quality,
energy consumption. In this talk, we focus on a concrete urban
phenomenon, i.e., real-time human mobility, based on ubiquitous
infrastructure-resident interactions[31]. In particular, we aim to
study the human mobility under well-developed infrastructures
to support multi-modal mobility, e.g., cars, taxis, metros, buses,
bikes[29] at urban scale in real time, which is essential to many city
services including transportation management [42], urban plan-
ning [40], and emergency response [22]. A common feature of these
services is to explore data collected when residents interact with in-
frastructures in the physical world and improve these infrastructure
with data-driven decision making, i.e., a Cyber-Physical System
(CPS) approach based on infrastructure-resident interactions [29].

2 CHALLENGES AND OPPORTUNITIES
The real-time human mobility is extremely challenging to model
and utilize because it requires large spatial coverage and fine tem-
poral coverage across different modes. To address this challenge,
we argue that these seemingly-untraceable human mobility can
be quantified by their interactions with infrastructures. Most lit-
erature along this line has been focusing on fine-grained mobility

to design models and services based on infrastructures and their
data [3], e.g., cellphones [44], smartcards [34], taxis [25], buses [41],
and subways [22]. However, their common drawback is that they
only capture incomplete, biased, and noisy mobility with single
infrastructures [33]. Some of our recent work has been focusing on
multiple infrastructures to address the drawback of single infras-
tructures based on infrastructure integration [17] [4], showing the
potential of infrastructure diversities. However, their key drawback
is that they are mostly based on multiple infrastructures from single
domains, e.g., transportation [17] or telecommunication [4]. Admit-
tedly, these multiple single-domain infrastructures indeed provide
some diversity [39], but they are still limited by their inherent ho-
mogeneous nature [9]. The historical reason for this limitation is
that researchers have been constrained by the capability of observ-
ing infrastructure-resident interactions across domains through
cross-domain data in a timely and low-cost fashion [33].

Under recent Data Revolution [3], many cities around the world
upgrade their infrastructures and consolidate large-scale real-time
infrastructure data (collected for billings and performance test-
ings) across different domains to understand and improve cities’
efficiency [38]. Compared to single-domain infrastructures, explor-
ing cross-domain data presents an unprecedented opportunity to
revolutionize human mobility modeling [29].

3 RESEARCH VISION
In our recent work, we have been exploring a framework for mobil-
ity modeling and resultant services based on Cross-domain Infras-
tructure resident Interaction. Its key novelty is the cross-domain
philosophy where these cross-domain data (e.g., cellphone logs,
vehicle GPS, smartcard transactions) present detailed mobility phe-
nomena from complementary perspectives [32]. In particular, this
framework has two kinds of key research tasks as in Fig. 1.
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Fig 1: Cross-Domain Modeling Framework
(1) Measuring and predicting Mobility by Mobility Mod-

els. We have been exploring various metrics to quantify human
mobility based on cross-domain data from city infrastructure in
terms of locations [19] [17], flows [33] [31] [39] [29] [25] [26], en-
ergy [11], routes [43], density [4], speed [38] [36] [30] [9] [40],
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time [3] [20], modes [44], privacy [1], web access [2] [8] [10], by
different statistical and machine learning models. These mobility
models will provide cross-domain knowledge for novel city services.

(2) Intervening and altering mobility by City Services.We
design and evaluate a few urban services including electric vehicle
charging [13] [14] [21] [12], ridesharing [35] [37] [28] [27], bike
rebalancing [15] [16], centralized dispatching [18] [7] [41] [42],
distributed navigation [24] [23], transit transferring [22], advertis-
ing [34] [5], parking [6], based on various Optimization, Control
Theory and Learning techniques. These city services provide posi-
tive cross-domain feedback to improve city infrastructures.

Based on these two sets of work, a closed-loop optimization can
be formulated where the improved infrastructures will generate
new cross-domain data, which will update our mobility models to
produce new cross-domain knowledge and then update our services
to produce new feedback to further improve the infrastructures.

In this talk, we will highlight a few projects with some new
challenges and opportunities under this cross-domain framework.
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