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ABSTRACT
We report a 30-month nationwide deployment and opera-
tion study of an indoor arrival detection system based on
Bluetooth Low Energy called VALID in 364 Chinese cities.
VALID is pilot-studied, deployed, and operated in the wild to
infer real-time indoor arrival status of couriers, and improve
their status reporting behavior based on the detection. Dur-
ing its full nationwide operation (2018/12-2021/01), VALID
consists of virtual devices at 3 million shops and restaurants,
where 530,859 of them are in multi-story malls and mar-
kets to infer and influence 1 million couriers’ behavior, and
assist the scheduling of 3.9 billion orders for 186 million
customers. Although indoor arrival detection is straightfor-
ward in controlled environments, the scale of our platform
makes the cost prohibitively high. In this work, we explore
to use merchants’ smartphones under their consent as a
virtual infrastructure to design, build, deploy, and operate
VALID from in-lab conception to nationwide operation in
three phases for 30 months. We consider metrics including
system evolution, reliability, utility, participation, energy,
privacy, monetary benefits, along with couriers’ behavior
changes. We share three lessons and their implications for
similar wireless sensing or communication systems with
large geospatial operations.

1 INTRODUCTION
Nowadays, instant delivery is an emerging business for Gig
Economy [24], where Gig workers deliver online orders (e.g.,
food) within a short time (e.g., 30 minutes) from merchants
(e.g., restaurants) to customers. This business proliferates
with the emergence of several delivery platforms worldwide,
e.g., Prime Now [6], UberEats [44], Instacart [23], and Door-
Dash [15] in the U.S.; Deliveroo [13] in the U.K.; Meituan [31]
and Eleme (i.e., Alibaba local service company, our plat-
form) [16] in China. For the platform, it is essential to know
couriers’ real-time arrival status at merchants, which is used
to (1) update order status in customer’s APPs for better cus-
tomer experience, (2) assign new orders to the most suitable
couriers, and (3) train learning models to estimate the order’s
preparing and delivery time for future orders [53]. Although
smartphone GPS can detect outdoor arrival, inferring couri-
ers’ indoor arrival is challenging due to the lack of low-cost
and reliable infrastructures at an extremely large scale.

In this paper, as one of the largest instant delivery plat-
forms with 83 million monthly active users in China, we re-
port an in-depth study of 30-month nationwide deployment
and operation for a system called VALID for VirtuAL arrIval
Detection. VALID is designed to provide nationwide indoor
arrival detection with practical cost/performance tradeoffs.
It is deployed to infer the indoor arrival status of 1 million
professional couriers at 530,859 indoor merchants in 364 Chi-
nese cities and few of them, if any, are under our control,
i.e., in the “wild”. Admittedly, in controlled environments,
e.g., labs or museums, indoor arrival detection is not tech-
nically challenging. However, it is still an open question for
nationwide in-the-wild detection.
In academia, the solutions are mainly based on Wi-Fi

[9, 10, 26, 27, 36], LED fixtures [28, 39, 46, 48], acoustics
[33, 35, 51], RFID [2, 45], and IMU [1]. In practice, how-
ever, they are inapplicable for nationwide deployment due
to monetary cost, energy consumption, or data unavailabil-
ity. For example, Wi-Fi-based solutions are widely studied
but inapplicable due to data unavailability (i.e., only 51% of
indoor merchants on our platform are covered by Wi-Fi sig-
nals, and Wi-Fi scanning is unavailable for common APPs
on iOS devices [8]), monetary cost (i.e., fingerprinting in a
dynamic environment), and energy consumption (i.e., con-
tinuous Wi-Fi scanning drains smartphones’ battery quickly
[7]). LED-based and RFID-based methods are limited due to
high deployment costs. Acoustic-based solutions are inappli-
cable due to data unavailability (i.e., couriers need to make
phone calls frequently). IMU-based solutions are also inappli-
cable due environment-specific calibration and unbearable
phone energy consumption with high-rate sampling.
In industry, current solutions are mainly in four cate-

gories: manual reporting [43, 49], smartphone GPS [40], cam-
eras [19], and dedicated deployments [14]. (1) For manual
reporting, it suffers from unintentional or intentional human
errors [49] (Fig. 2); (2) GPS is inaccurate in indoor environ-
ments (e.g., multi-story malls); (3) For cameras, it is difficult
for third parties (our merchants) to provide their videos (e.g.,
surveillance video) due to the privacy concerns; (4) For dedi-
cated deployment, a citywide physical Bluetooth Low Energy
(BLE) beacon systemwas introduced in [14], but the costs are
prohibitively high to scale it up for nationwide deployment.
To address the limitations of the above solutions, we ex-

plore two opportunities from two perspectives, i.e., hardware
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and software: (i) the high penetration of low-cost smart-
phones (hardware), (ii) the already-installed merchant APP
(software) to build a virtual beacon system without dedi-
cated devices but using merchants’ smartphones under their
consent (See Discussion section for ethics and privacy protec-
tion). In particular, for the hardware, new models of low-cost
(e.g., less than $200), fully-functional (e.g., BLE) smartphones
are brought to the market every year; for the software, the
percentage of merchants using merchant APP (instead of
PC) for order management has been significantly increasing,
e.g., from 47% in 2018/08 to 85% in 2021/01 on our platform.
However, serving as a virtual beacon is an optional but

not mandatory function for merchants. Thus, one unique
challenge for VALID is the incentives for merchants to par-
ticipate in, i.e., benefits vs. costs of allowing the platform
to use their smartphones as virtual beacons. Based on our
interview with representative merchants, we found that mer-
chants have enough incentives to participate in VALID if we
can keep their participation benefits high yet the cost low. In
particular, the virtual beacons can help the couriers report
arrival easier and accurately, so they help the platform de-
liver the orders faster for a better customer experience, thus
ultimately benefiting merchants themselves.

These unique opportunities and challenges of using mer-
chants’ smartphones as virtual beacons call for an elegant
balance of simplicity and complexity of our VALID design
for nationwide low-cost indoor arrival detection. To eval-
uate VALID, we comprehensively explore various metrics,
including cost metrics (e.g., energy consumption and pri-
vacy risks), performance metrics (e.g., reliability and utility),
and couriers’ behavior changes influenced by detection re-
sults from VALID. Based on these metrics, we report VALID’s
deployment and operation in three phases.
• Phase I: 1-Month Feasibility Study (2018/08-09). We
conduct this study in a controlled environment with 20
devices to emulate couriers and merchants for reliability
testing under various parameter configurations, including
transmission frequency and powers in two OS.

• Phase II: 3-Month Citywide Testing (2018/09-12). We
embed VALID in themerchants’ and couriers’ APP in Shang-
hai under their consent to mainly compare the merchants’
smartphones as virtual beacons to the physical beacons
we deployed in a citywide uncontrolled environment.

• Phase III: 26-Month Nationwide Operation (2018/12-
2021/01). We embed VALID nationwide, and VALID has
been operational as of this submission. We utilize the ac-
counting data to conduct a post-hoc analysis to evaluate
VALID in retrospect because of lacking nationwide physi-
cal beacons as ground truth. During this 26 month VALID
evolution as merchants enter and leave, we evaluate VALID
with metrics (e.g., reliability with different hardware and
courier behavior change) that cannot obtain in Phase II.

Based on our successes and failures in the deployment and
operation, we discuss three lessons learned to provide in-
sights for other similar systems and our future work VALID+.
Lesson learned 1: Evolution in theWild. VALID suggests
that a participatory less-expensive software-based “virtual”
beacon system evolves more robustly (i.e., with a gradually
increasing scale) even with high nationwide uncertainty (i.e.,
364 cities), compared to a dedicated expensive hardware-
based “physical” beacon system with low citywide uncer-
tainty (i.e., Shanghai), as in Fig.7 (i). However, it is essential
to provide incentives for users to participate in a virtual sys-
tem (even with APPs they are using) by minimizing costs and
showing benefits of participation, which can be potentially
addressed by system design simplicity. (Details in Sec.6.1)
Lesson learned 2: Reliability in the Wild. Although the
imperfect reliability of a physical beacon system in the wild
has been discussed in [14], we found that a virtual beacon
system suffers more due to the uncontrolled factors on the
senders’ side (e.g., iOS’s restriction on background BLE adver-
tising, merchants’ participation and mobility). Given these
factors, an asymmetric design philosophy has the potential
to improve the reliability by increasing participation, such
as a simplified design for the users who require strong in-
centives to accommodate device diversity (e.g., merchants);
whereas a more complicated design for the users who require
little incentives (e.g., couriers). The in-depth understanding
of virtual and physical beacons’ reliability also sheds some
light on the decision for future BLE-based sensing tasks in
trading off the cost and reliability. (Details in Sec.6.2)
Lesson learned 3: System-Human Synergy. One of the
VALID’s goals was to help couriers get rid of manual report-
ing, which can improve their experience especially when
carrying multiple orders and cannot operate on the phones
timely. Although the imperfect reliability of VALID in the
wild prohibits us from a complete replacement of manual
reporting, we adopted and tested two complementary mech-
anisms based on VALID. (1) “report arrival automatically” for
the couriers when arrival is detected by VALID, and (2) “no-
tify” the couriers when they want to report arrival that is
not detected by VALID, to complement human input. Similar
to VALID, many systems are designed to complement human
input due to unintentional errors (e.g., driving assistance [3])
or intentional manipulation (e.g., fraud detection [11]). Typ-
ically, these systems provide some suggestions to change
users’ behavior; in turn, the users can provide feedback
to correct these systems, leading to a mutually beneficial
system-human synergy to improve each other. In the oper-
ation of VALID so far, we found an asymmetrical synergy
under a 10-month intervention with 89 thousand couriers,
where the couriers improved VALID at a higher degree than
VALID improved the couriers’ behavior. (Details in Sec.6.5)
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2 BACKGROUND AND MOTIVATIONS
Overdue Orders. Compared to other logistics (e.g., FedEx),
the key feature of instant delivery is its guaranteed fast deliv-
ery time. Usually, a pre-defined deadline (e.g., 30 minutes) is
shown to the customer when an order is placed. If the order
is not delivered within the deadline, it is considered as an
overdue order, for which the platform refunds the delivery
fee or even pays back to the customer for compensation. This
overdue compensation as a penalty eventually comes to the
corresponding courier or merchant depending on responsi-
bility, e.g., late merchant preparation or late courier arrival,
which is typically determined by the courier’s waiting time
at the merchant derived from the platform accounting data.
PlatformAccounting Data.Our platform collects account-
ing data from merchants, customers, and couriers. We only
focus on couriers’ accounting data because they are more rel-
evant to our detection problem. These data log the time and
locations of four major order delivery statuses of a courier as
shown in Table 1, including accepting an order, arrival at the
merchant, departure from the merchant, and final delivery to
the customer. All status data are based on couriers’ manual

Table 1: Courier Accounting Data

Field Value
Order/Merchant ID O001/M001
Accepting 2018/01/10 12:00:00 & Lat./Longitude
Arrival 2018/01/10 12:10:00 & Lat./Longitude
Departure 2018/01/10 12:10:10 & Lat./Longitude
Delivery 2018/01/10 12:25:00 & Lat./Longitude

reporting on their APPs. These data are significant to the
platform because they (1) are used for the platform’s new or-
der assignment; and (2) are shown to customers in real-time
to improve customers’ experiences. However, we learned
from couriers’ feedback that manual reporting is annoying
because they sometimes forget to click or cannot operate
on the phone when carrying multiple orders, leading to in-
accurate reported data and degraded time estimation and
order assignment. Therefore, a major motivation of VALID
is to ease couriers’ burden so that they don’t need to report
“arrival” and “departure” at the merchants.
Citywide Physical Beacon System in Shanghai.

Merchant

Physical Beacon 

76km

Shanghai Deployment 
Heatmap

Fig. 1. Physical Beacon Deployment

We validated the
accuracy of couri-
ers’ manual re-
ports at scale at
indoormerchants.
Our team designed,
fabricated, and de-
ployed 12,109 phys-
ical BLE beacons
in Shanghai (each

merchant with one beacon as in Fig.1) under their consent
with $500K budget. A physical beacon deployed at a mer-
chant continuously advertises a unique ID tuple with the
BLE protocol. A courier’s smartphone receives this ID tuple
in proximity (e.g., 20 meters) of the merchant. The received
ID tuple is then uploaded by the courier’s phone to the plat-
form server in real-time. The server identifies the merchant
matching this ID tuple and decides the courier’s arrival time
at this merchant. This physical beacon system has been used
to obtain the real-time ground truth of the arrival time in
Shanghai for our citywide testing of VALID in Phase II.
Inaccurate Reporting Behavior Detected by Physical
Beacons. Based on the physical beacon system in Shang-
hai, we performed a citywide case study of the Reporting
Behavior. We consider a report accurate if the arrival time
reported is within one minute of the actual arrival time.
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Fig. 2. Inaccurate Reporting.

Fig. 2 plots the dis-
tribution of the time
difference between
the actual and re-
ported arrival time
of one-month orders.
We found only 28.6%
of the orders are ac-
curate for their ar-
rival time, and 19.6%
of the orders are ear-
lier for more than 10 minutes. Unfortunately, these inac-
curate arrival time as courier accounting data have been
used in our order assignment and showed to customers for
order progress, jeopardizing both order assignment effective-
ness and customer experience. Based on these findings, our
deployed physical beacon system in Shanghai has been con-
sidered a successful pilot study. Motivated by this citywide
system, our next stage goal is a nationwide arrival detection
system. However, deploying and operating a nationwide
physical beacon system nationwide would introduce unbear-
ably highmonetary and labor costs because of 530,859 indoor
merchants at 364 cities the system needs to cover. It is the
key motivation to design VALID as a virtual beacon system.

3 VALID DESIGN
3.1 Requirements of Nationwide Detection
Problem Definition. Our problem is to detect the couriers’
arrival time at indoor merchants for all orders. This is es-
sentially a simplified real-time indoor localization problem
where the timing is needed for only a set of pre-defined lo-
cations (i.e., merchants). Given the enormous scale of the
arrival detection, a feasible solution has two fundamental
requirements as follows.
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• Requirement 1: Reliable for Indoor Coverage. A fea-
sible solution should cover most merchants (if not all) de-
spite the merchant diversity (e.g., business types, Internet
status, etc.). The daily detection workload is based on our
business scale, i.e., 14 million daily orders from 83 million
monthly active customers.

• Requirement 2: Low Cost for Nationwide Operation.
A feasible solution should have the average total cost per
merchant considerably lower than a physical beacon we
deployed ($8 per unit for devices only).

3.2 Opportunity and Challenges
Smartphones as Virtual Beacons. For Requirement 1, if
merchants choose to accept orders with their smartphones,
they will continuously use their smartphones at their stores
as long as they accept orders. Thus these merchants’ smart-
phones will be near couriers’ smartphones picking up the
orders, making merchants’ smartphones potentially reliable
for arrival detection. For Requirement 2, we found 85% of
our merchants have already been using smartphones to ac-
cept orders. As a result, we explore the opportunity of using
merchants’ phones as low-cost virtual beacons with reliable
indoor coverage for VALID. However, the key challenge for
this virtual beacon approach is the incentive, i.e., benefits vs.
costs. We list two costs and two benefits for merchants to
participate in VALID as follows.
• Cost 1: Energy Consumption. VALID’s resource require-
ment on merchant phones (e.g., storage and communica-
tion) has to be minimized for lower energy consumption
(measured by Energy Metric 𝑃Energy defined in Sec. 4).

• Cost 2: Privacy Risk. An adversary may have devices to
listen to merchants’ advertising to "re-identify" them from
an anonymous open dataset, so VALID has to ensure the
re-identification rate (measured by Privacy Metric 𝑃Privacy)
is low even with large-scale adversarial devices.

• Benefit 1: Clearer Overdue Accountability. The plat-
form will know whether the overdue is because of late
courier arrivals or late merchant preparation, based on
highly-reliable VALID (measured by ReliabilityMetric 𝑃𝑡 ·𝑛Reli).

• Benefit 2: Better Order Assignment. VALID can make
the new order assignments for this merchant more effec-
tive because we know which couriers are nearby (e.g., just
arrived) to this merchant based on VALID. Better time esti-
mation results (e.g., merchants’ preparation time, couriers’
pickup time) can also be obtained for order assignment
with more accurate couriers’ arrival time. This effective
scheduling reduces the overdue rate (measured by Utility
Metric 𝑃𝑡 ·𝑛Util) and leads to monetary saving (measured by
Benefit Metric 𝐵𝑇 ) by avoiding overdue.

The benefits and costs limit VALID’s design space signifi-
cantly, asking for a balance between the simplicity and com-
plexity of different participants, e.g., couriers or merchants.

3.3 Key Idea
OverallWorkflow. As in Fig.3, we decide to (0) ask for mer-
chants’ consents that we can use their smartphones to detect

Merchant Courier

Server

(1) Advertising 
ID Tuples

(0) One-time 
APP Install 
& Consent

(2) Uploading 
Scanned 

ID Tuples

(3) Arrival Detection Based on 
Pre-existed ID-Location Mapping 

Fig. 3. Key Idea of VALID

couriers when they in-
stall our merchant APP;
(1) let consenting mer-
chants’ phones work as
virtual beacons to adver-
tise ID tuples contin-
uously by the BLE 5.0
protocol when they are
in the order accepting
status; (2) let couriers’
phones passively scan for ID tuples and then upload re-
ceived ID tuples to a back-end server in real-time by In-
ternet connection (e.g., cellular); (3) let the server with the
received ID tuples check a pre-stored mapping between ID
tuples and merchant IDs to detect an arrival finally.
Design Simplicity for Merchant as Sender. In practice,
we embedded VALID as a software development kit (SDK)
(not activate without consent) in the merchant APPs. The
merchants’ effort is minimized with the following mecha-
nisms: (1) no need for configuration after initial consent, i.e.,
VALID is “automatic” from the merchant perspective; (2) only
advertise a short message of ID tuples when the merchants
are in order accepting status, which is automatically obtained
from their log-in and log-off records; (3) no BLE scanning; (4)
no sensor data (e.g., GPS) collecting. Note that a merchant
can switch off VALID at any time in the APP, even after the
initial consent. It provides flexibility but introduces potential
exploits in theory. See our Discussion for details.
Design Complexity for Courier as Receiver. Couriers
are our employees with obligations to join VALID, so we col-
lect courier smartphones’ sensor data when they are working
(under their consent) to optimize the scanning to save en-
ergy. The sensor data are collected at low sampling rate (i.e.,
10Hz), and on-device learning is used so that the data are not
uploaded to the server. In particular, scanning will stop if the
courier is either (1) not moving (detected by accelerometer);
(2) away from (e.g., >1km) potential merchants (detected by
GPS); (3) not in a delivery task. In practice, we embedded
VALID as an SDK in the courier APP. Couriers can switch off
the scanning in APP if they prefer, even with obligations.
Automatic Arrival Report and Notification on Early
Manual Report. Based on VALID, we add two functions
in the courier APP to improve couriers’ experience in the
arrival reporting process, potentially influencing their report-
ing behavior. (1) The first is “automatic arrival reporting”.
When we find the virtual beacon is reliable, the function will
automatic report the arrival event when a courier’s smart-
phone automatically scanned the virtual beacon in the target
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merchant. (2) The second is “early reporting warning”. A
notification will pop up in a courier APP if she tries to report
an arrival manually before VALID detection. She can stop
and report later (i.e., VALID’s detection influences her behav-
iors) or continue reporting it (i.e., she provides feedback to
correct our detection potentially). The significance for the
second function is early reporting is invalid and likely to
be penalized if a severe timeout (i.e., 1 hour late) happened.
We want the courier to receive a warning during delivery,
instead of getting penalized after delivery.
Alternatives and Justification. We decide to let couriers
scan and merchants advertise instead of the alternative (i.e.,
couriers advertise and merchants scan) because letting couri-
ers scan is compatible with existing BLE beacon services in
public areas like airports and museums, where couriers can
also acquire their locations via BLE scanning. Meanwhile, if
we can let couriers advertise and scan at the same time, it can
enable fine-grained indoor localization based on couriers’
frequent encounters (see our VALID+ in Discussion).
3.4 Trustworthy Advertising
Potential Weakness. The merchants’ advertising message
is an ID tuple with three parameters (UUID, Major, Minor):
UUID is a 16-byte number to distinguish our beacons from the
devices in other systems; both Major and Minor are 2-byte
integer values where Major is to identify a beacon group,
e.g., a mall; whereas Minor is to identify an individual bea-
con from beacons with the same Major. In the protocols
based on BLE 5.0 (e.g., iBeacon [22]), an ID tuple is fixed for
each device and advertised in cleartext. It reduces the pro-
tocol complexity but leads to merchant privacy or platform
security problems under potential advertising sniffing [25].
Potential Attacks.We list two attack models. Model 1: an
adversary can replicate some ID tuples and advertise them
in other locations (e.g., mall entrance), which can potentially
lead to a wrong detection, and thus ineffective order assign-
ment and accounting; Model 2: an adversary can deploy
some mobile devices to eavesdrop by secretly scanning mer-
chants’ ID tuples, their locations, and their store names as
“side information” in the physical world by war-driving [41],
which can potentially lead to two problems: (a) a “free rider”
problem where the side information is used by unauthorized
users (e.g., competing company) to detect their couriers; (b) a
merchant privacy problem where the side information being
used to attack an anonymous open dataset (e.g., anonymous
online reviews or even a leaked platform dataset) for re-
identification of certain merchants [12].
Countermeasures. To address these problems, we augment
our advertising with the SM3 algorithm, i.e., a public Time-
based One-Time Password (TOTP) [47] algorithm to encrypt
the ID tuple, similar to Google Authenticator. Specifically,
the server assigns a seed ID to a merchant’s phone when

she logs into our platform for the first time. For every du-
ration of 𝐾 , the server (1) calculates an encrypted ID tuple
for each phone based on its seed ID and timestamp; (2) up-
dates the mapping of the merchant’s real identity and its
newly encrypted ID tuple; and (3) sends the encrypted ID
tuple to the phone for advertising. We did not let the phones
calculate the encrypted ID tuple locally because of the com-
putation cost, the reverse-engineering risk, and the potential
clock drifting on the phones. For the periodical encryption, a
shorter period 𝐾 makes the advertising safer but may cause
some issues. For example, if 𝐾 is one hour, the chance of en-
crypted ID tuple inconsistency (i.e., between the one sent by
the merchant and the one stored at the server) will increase
due to unaligned timestamps or lost connections with the
server. In practice, we empirically set 𝐾 as one day (Fig.6).

4 VALID METRICS
Cost Metric 1: Energy Consumption 𝑃Energy.We use the
smartphone battery decreasing ratio (i.e., battery drain) of
merchants participating in VALID compared to non-participating
merchants for energy consumption quantification [32, 34].
Cost Metric 2: Privacy 𝑃Privacy.Weuse the re-identification
ratio [12] as the privacy metric to measure a VALID mer-
chant’s risk of being re-identified from a set of anonymous
merchants. It is calculated as the percentage of merchants
re-identified correctly from all merchants in our data-driven
emulation because there were no existing privacy incidents
during our 30-month operation.
Performance Metric 1: Reliability 𝑃𝑡 ·𝑛Reli.We quantify the
reliability of a virtual beacon 𝑛 for a duration 𝑡 as the per-
centage of couriers detected by 𝑛 among all arrived couriers,
which are obtained by either physical beacons in Phase II or
the platform accounting data in Phase III (detailed in Sec. 5).
Performance Metric 2: Utility 𝑃𝑡 ·𝑛Util. We quantify the util-
ity of a virtual beacon 𝑛 for a time duration 𝑡 by delivery
overdue rate reduction of the corresponding merchant. Be-
cause overdue rate is a key metric to evaluate a platform’s
ability to meet deadlines, and its reduction can be easily
converted to monetary returns. Since the overdue rates are
influenced by many factors (e.g. dispatching, policy, etc), we
calculate the overdue rate reduction as a gain between the
participating and non-participating merchants as an A/B
test, by assuming the other factors are the same in a close
geospatial area with similar merchant types, e.g., all fast food
stores within a 3 km radius. For example, if the overdue rates
for merchant𝑚 and 𝑛 for time period 𝑇1 and 𝑇2 are 𝑂𝑅𝑚T1,
𝑂𝑅𝑚T2, 𝑂𝑅

𝑛
T1, and 𝑂𝑅

𝑛
T2, respectively. But only 𝑛 is participat-

ing in VALID, so 𝑛’s gain as the overdue rate reduction is
[(𝑂𝑅𝑛T1 −𝑂𝑅𝑛T2) − (𝑂𝑅𝑚T1 −𝑂𝑅𝑚T2)].
Performance Metric 3: Participation 𝑃𝑡 ·𝑛Part. We measure
the participation of a merchant 𝑛 for a duration 𝑡 by the
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Table 2. Overview of Three Phases of VALID Nationwide Deployment and Operation

Scale

Phase I: Feasibility Study 
(2018/08-2018/09)

Phase II: Citywide Testing
(2018/09-2018/12)

Phase III: Nationwide Operation 
(2018/12-2021/01)

10 iOS and 10 Android  
Phones; In-Lab

98.7 K Merchants; 33.5 K Couriers
46.4 K Orders;               Shanghai       

3.3 M Merchants (531K Indoor Merchants)
1M Couriers;  3.9 B Orders;  364 Cities

Courier Arrival 
Detection 
Reliability

91%
Factors: Distance

Truth: In-Lab Experiments

80.8% (Fig.4)
Factors: Phone Diversity

Truth: Phy. Beacon & Accounting Data

84% for Android; 38% for iOS (Fig.8, Tab.3)
Factors: Phone Diversity; Stay Duration

Truth: Accounting Data

M
er

ch
an

t EnergyConsum. 3.1% per hr Battery Drain 2.6% per hr Battery Drain (Fig.5) N/A

Privacy N/A 0.03% of Re-identification Risk (Fig.6) N/A
Utility N/A 1% of Absolute Overdue Reduction 0.7% of Absolute Overdue Reduct. (Fig.10&11)

Participation N/A 81% 85% with Merchant Features (Fig.12)
Platform Benefit N/A 42 Thousand USD  in Total 7.9 Million USD  in Total (Fig.7 (iii))

Behavioral Interve. N/A N/A 14.2% Improv. of Reporting Behavior (Fig.13)

Metrics

Phase

VALID switch-on/off data. 𝑃𝑡 ·𝑛Part is 0 if VALID is switched off
for 𝑛 during 𝑡 and 1 otherwise.
Platform Benefit Metric 𝐵𝑇 .We quantify a merchant 𝑛’s
benefit until time 𝑇 as

𝐵𝑛𝑇 =

𝑇∑
𝑡=1

[ 𝑃𝑡 ·𝑛Part · 𝐹 ( 𝑂𝑡 ·𝑛, 𝑃𝑡 ·𝑛Reli, 𝑃
𝑡 ·𝑛
Util, 𝐶

𝑡 ·𝑛
Overdue ) ],

𝐹 indicates themonetary saving from reduced overdue penalty
of the orders detected by 𝑛 during 𝑡 .𝑂𝑡 ·𝑛 is the number of or-
ders during time 𝑡 in the merchant with𝑛, e.g., 100; 𝑃𝑡 ·𝑛Reli is the
percentage of the orders whose couriers can be detected by 𝑛
during 𝑡 , e.g., 80%; 𝑃𝑡 ·𝑛Util is the absolute overdue rate reduction
for orders whose couriers are detected by𝑛 during 𝑡 , e.g., 20%;
𝐶𝑡 ·𝑛
Overdue is the overdue penalty per order for the merchant

with 𝑛 during 𝑡 , e.g., $1. An example implementation of 𝐹 is
the product of all these terms, i.e.,𝑂𝑡 ·𝑛 · 𝑃𝑡 ·𝑛Reli · 𝑃

𝑡 ·𝑛
Util ·𝐶

𝑡 ·𝑛
Overdue

(e.g., saving is 100 · 80% · 20% · $1 = $16). Thus, the benefits
for all participating merchants, i.e., platform benefit, until 𝑇
is 𝐵𝑇 =

∑
𝑛∈𝑁𝑡

𝐵𝑛
𝑇
where 𝑁𝑡 is the participant set until 𝑡 .

Behavior Intervention Metric. We measure time differ-
ence between detected and reported arrivals before and after
the intervention to understand VALID intervention.

5 DEPLOYMENT AND OPERATION
Methodology. As in Table 2, we divide our 30-month work
into 3 phases based on the ability to test VALID: Phase I, an in-
lab feasibility study where we have complete ground; Phase
II, a citywide study in Shanghai where we have physical bea-
cons as the ground truth for real-time evaluation; Phase III,
a nationwide operation in 364 cities in China for 25 months
where we only have accounting data for post-hoc analysis.
Post-Hoc Analysis. The final “order delivery” reporting in
the accounting data in Table. 1 gave us the offline ground
truth in retrospect for the reliability evaluation nationwide.
Specifically, after an order was delivered to a customer, the
courier will manually update it as “delivered” on the courier

APP. With this reported final order delivery time, we know
a courier must have arrived at the corresponding merchant
some time ago to pick up this order. Otherwise, the courier
could not deliver the order to the customer. Therefore, we
can find a false negative detect result in retrospect, e.g., a
courier arrived at a merchant but never detected by VALID.
The reported order delivery time is typically accurate be-
cause inaccurate reporting may cause customer complaints,
making the couriers rarely do it.

5.1 Phase I (2018/08-09) Feasibility Study
We use 5 iOS and 5 Android phones as senders to emulate
merchant phones and other 10 phones as receivers to emulate
courier phones. We test different advertise frequencies and
powers by obtaining the results for average Received Signal
Strength Indicator (RSSI) [50] and percentages of advertise
messages scanned at five distances, i.e., 5m, 15m, 20m, 25m,
50m. When the APP is active, iOS phones perform better as
senders where the advertising signal is stable within 15m
with 91% reliability but degrades dramatically beyond 25m.
Specifically, iOS has a restriction on these fine-grained ad-
vertise configuration; Android has four advertising powers
(i.e., HIGH, MEDIUM, LOW, ULTRA_LOW) where we set HIGH,
and three advertise frequencies (i.e., LOW_POWER, BALANCED,
LOW_LATENCY) where we selected BALANCED. For energy, we
found continuous advertising only cost 3.1% additional bat-
tery on average. We omit the results since they are consistent
with existing BLE works [21, 30, 38].

5.2 Phase II (2018/09-12): Citywide Testing
In 2018/09, the VALID modules were embedded in the mer-
chants’ and couriers’ APP in Shanghai. As merchants update
the APP gradually, the number of participating merchants in-
creased from 23 on 2018/09/07 to 98,787 (81%) on 2018/12/07,
We select the ones with ground truth (i.e., with physical bea-
cons deployed) for testing. Given the parameters in Phase
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I, our goal is to validate if the merchant’s phones, as virtual
beacons in a citywide uncontrolled environment, have the
similar reliability as the physical beacons deployed. We also
study some metrics that cannot be obtained in Phase I, e.g.,
Participation, Privacy, and Benefits.
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Reliability. To evalu-
ate the reliability of
VALID and compare it
with physical beacons,
we use accounting data
(Table 1) as ground
truth. Fig. 4 (i) and (ii)
show the percentage of
arrival events detected
by VALID and physical
beacons among all the arrival events. The average reliability
is 80.8% for virtual beacons and 86.3% for physical beacons.
The result is reasonable because virtual beacons are also im-
pacted by merchants’ mobility and merchants’ smartphone
hardware and software, as well as the common factors for
both virtual and physical beacons (e.g., beacon positions,
hardware and software of couriers smartphones). We also
calculate the reliability of virtual beacons using physical
beacons as ground truth (Fig. 4 (iii), 74.8% on average). It
suggests that a gap of reliability between virtual and physical
beacons, and a hybrid deployment is promising in improv-
ing the overall reliability. Note that a long tail is observed
for virtual beacons, possibly due to the impact of different
sender-receiver combinations as shown in Table 3.
Other Metrics. (1) Cost Metric 1: Energy Consumption. Fig.5
shows the smartphones’ energy consumption of participat-
ing merchants measured by battery decreasing (2.6%) is very
similar to the merchants not participating in both iOS and
Android phones. (2) Cost Metric 2: Privacy. Fig.6 shows the
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Fig. 6. Privacy Risk
re-identification ratio increases as an adversary utilizes more
eavesdropping devices based on a data-driven emulation of
Model 2 in Sec.3.4. We found that with the ID update cycle
set as 1 day (our default setting), a merchant is uniquely
re-identified in a supposedly-leaked anonymous platform
accounting data set with a set of 73.8K merchants in Shang-
hai is smaller than 0.03% even under a powerful adversarial
attack model. In this model, 1,000 adversaries with mobile
devices follow the 1,000 couriers to eavesdrop on merchants’

advertises in Shanghai to collect side information to attack
this supposedly-leaked data with all merchants (e.g., a brutal
search to match two datasets). We found that even we use 4
days as ID update cycles, the risk ratio is still below 0.3%. (3)
Performance Metric 2: Utility. For all participating merchants,
their utility (i.e., overdue rate reduction) improves by 25%
on average (from 5% to 4%). (4) The platform benefits are 42
thousand USD (out of 211 thousand USD of total overdue
compensation during the same time in Shanghai). We omit
Shanghai results due to space limitation, but they are part of
our nationwide results in Sec. 6.

5.3 PhaseIII(18/12-21/01):National Operation
After testing in Shanghai, we started our nationwide deploy-
ment in 2018/12, and VALID has been operating until this
submission. As VALID evolves as merchants enter and leave,
we have been utilizing the accounting data to conduct daily
post-hoc analysis to monitor the operation of VALID. We
show the results in the next section.

6 NATIONWIDE OPERATION RESULTS
6.1 VALID Evolution
Overview. In Fig.7, we show a panorama of three phases
from 2018/08 to 2021/01. In Fig.7 (i), given a day 𝑡 , we show
both the number of merchant phones as virtual beacons 𝑁𝑡

with "participating" status in VALID and the number of de-
livery orders 𝑂𝑡 whose couriers are detected by VALID, so
every order is associated with an arrival detection by VALID.
We also show the active physical beacons we deployed in
Shanghai in 2018/01 to compare their evolution with that of
virtual beacons. In Fig.7 (ii), we visualize VALID’ evolution at
4 key time points. (a) 2018/12: 2nd week of Phase III where
VALID has not been uniformly deployed due to batched mer-
chant APP update; (b) 2019/01: 1st month where VALID is
fully operated on a few metro hubs; (c) 2020/01: 13th month
where VALID is evolved to all major cities and reaches a very
high percentage of cities our platform served (336/367); (d)
2021/01: the latest scale as of this submission.
Scales ofVirtual Beacons andArrivalDetection. In Fig.7
(i), we found our Phase II testing in Shanghai leads to some
fluctuations starting 2018/10 on virtual devices numbers and
resultant detection because we tested the operation of VALID
in Shanghai by opening and closing scanning functions in
some regions to ensure it has no impact on couriers APP’s
main function (i.e., accepting orders). From the start of Phase
III, the scale of VALID has been increasing gradually as more
merchants jointed than left every day, partially because of the
low cost of being virtual beacons. For these left merchants,
we found the main reasons are either merchants switch to
other platforms or merchants closed permanently. Based on
our data, the merchants’ turnover rate is high, i.e., 76.5% of
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Fig. 7. (i) VALID timeline including Phase I Feasibility Study, Phase II Citywide Testing in Shanghai, and Phase III
Nationwide Operation; (ii) VALID nationwide virtual beacon heatmaps for 4 key months and the corresponding
time expanded to (i) and (iii); (iii) Benefits with upper-bound and empirical utility and Per-Merchant Benefit.

new merchants in 2018 were closed or changed to another
store within one year of the opening. We found in the opera-
tion stage of Phase III, the number of arrivals detected (i.e.,
orders) is around 10 times of the number of VALID’s virtual
devices, which implies each virtual device detects 10 arrivals
on average every day. This ratio remains similar throughout
Phase III except the mid-February, during which the detec-
tion decreases sharply due to the Spring Festival, i.e., the
biggest holiday in China. We observed some sharp decreases
and recoveries around 2019/02, but the recoveries in 2020
took much longer due to COVID-19, and the corresponding
recovery impact on the benefits is in Fig.7 (iii).
Evolution of Benefits. In Fig.7 (iii), we show the platform
benefits (defined in Sec. 4), i.e., the money saved due to over-
due reduction. We show two cumulative platform benefits
based on the empirical value of utility 𝑃𝑡 ·𝑛Util (i.e., overdue rate
reduction after a virtual beacon 𝑛 participates), along with its
upper bound 𝑃

𝑡 ·𝑛
Util (i.e., we assume all merchants participate),

respectively. We also show the average individual benefits
for each merchant as the red line. As of 2021/01, the empiri-
cal cumulative benefits are $7.9 million, which is impressive

compared to the $65 million of estimated overdue compen-
sation in the whole country in 2020. The number is close to
its upper bound due to the high participation rate (85%). The
platform benefit jumped significantly in 2020/02 due to the
merchants’ reopening after the strike of COVID-19, which
leads to a lower average benefit.

Detailed Lesson Learned 1: System Evolution in the
Wild. Comparing two systems as in Fig.7 (i), we found that
the scale of our virtual VALID has been gradually increasing
nationwide; whereas the scale of our physical beacon system
(evenwith amuch smaller scale compared to VALID) has been
constantly decreasing due to beacon dying for various factors
(e.g., vandalism, battery). We have to retire the physical bea-
con system starting 2019/11. This fundamental observation
suggests a participatory less-expensive “virtual” beacon sys-
tem evolves more robustly (i.e., with a gradually increasing
scale) even in a highly uncertain nationwide environment
(i.e., 364 cities), compared to a dedicated more-expensive
“physical” beacon system in a less uncertain citywide envi-
ronment (i.e., Shanghai as the most advanced city of China).
However, it is essential to provide incentives for merchants

8



to participate in a virtual system by minimizing the partici-
pation costs and showing the participation benefits, which
can be potentially addressed by the system simplicity and
benefit quantification as in Fig.7 (iii). To further increase the
platform benefit, our on-going work for the next generation
of VALID, i.e., VALID+, enables courier phones to advertise
as well to work as "mobile virtual beacons". This is because
the merchant phones can only work as "stationary virtual
beacons" because they can only detect couriers at merchant
locations, making current VALID lacking of beacon mobility.
But in VALID+ with courier advertising, we can further in-
crease the system scale and benefit since VALID+ can detect
couriers by each others based on their encounters outside
the premise of indoor merchants (see Discussion for details).

6.2 Performance Metric 1: Reliability 𝑃 𝑡 ·𝑛Reli
Impact of Stay Duration on 𝑃𝑡 ·𝑛Reli. The stay duration is
the time difference between a courier arrives at and departs
from a merchant, which is obtained by our accounting data
as shown in Table 1. Even there were inaccurate report data
due to human errors (Fig.2), our results can still provide
statistically significant insights based on 3.9 billion orders
during more than 25 months. The stay duration varies due
to multiple factors but the main factor is waiting for orders.
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Fig.8 shows the relia-
bility in four settings
with different OS in mer-
chants’ (i.e., senders) and
couriers’ (i.e., receivers)
smartphones. We found
the reliability is very low
(i.e., 38%) with iOS mer-
chant phones compared
to Android (i.e., 84%), because of a recent iOS update on per-
mission management that an APP cannot advertise in the
background. However, in other three settings, the reliability
is around 80%. In particular, we found that within 7-minute
stay, the longer that a courier stays, the higher the reliability;
after 7 minutes, the reliability reduces gradually because a
longer time is not helpful for them to be in proximity.
Impact of BLE Device Density. One potential impact fac-
tor on reliability is the interference from nearby BLE de-
vices. We evaluate this impact by finding the BLE advertise-
ment sent by different numbers of merchant BLE devices but
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Fig. 9. Density Impact

scanned by the same couri-
ers’ phone at the same time.
The results in Fig.9 shows that
no obvious impact is observed
even there are around 20 dif-
ferent BLE devices (i.e., mer-
chant smartphones) advertising

nearby. That is, BLE-based detection is robust to interference
from other BLE devices at a relative high density.
Impact of SmartphonesDiversity on 𝑃𝑡 ·𝑛Reli. Since the data
show our nationwide 1 million couriers use phones with
258 brands and 5,251 models, our goal is to have most mer-
chant and courier phones (if not all) to be compatible at both
software (i.e., OS) and hardware (i.e., phone models) levels.

Table 3. Impacts on Reliability

Apple(29%) 37% 80% 89% 77% 79% 86%

HUAWEI(20%) 38% 78% 87% 76% 79% 85%

Xiaomi(2%) 38% 72% 77% 75% 70% 81%

vivo(33%) 37% 77% 79% 76% 77% 84%

Samsung(1%) 39% 81% 83% 78% 82% 87%

Others(15%) 37% 78% 80% 77% 79% 85%

Merchant 
as Sender

Courier 
as Receiver

(Shares)

(Shares)

It is impossi-
ble for us to
know if they
are using un-
supported smart-
phones or to
force them to
use specificmod-
els or OS. We
show five ma-
jor brands from
merchants and
couriers in Ta-
ble 3. We find
that when Ap-
ple phones were used by merchants to advertise, the relia-
bility is significantly lower because of iOS restricting back-
ground advertise. In contrast, we found Xiaomi performs the
best as senders and Samsung performs the best as receivers.

Detailed Lesson Learned 2: Reliability in theWild.We
found that a well-calibrated virtual beacon system for a sim-
ple sensing task (i.e., arrival) has low reliability in uncertain
environments, even though it has high reliability in con-
trolled in-lab environments. It is mainly affected by many
real-world factors including sensing subject status (e.g., stay
duration for couriers in Fig.8) and phone OS & hardware
combination and permission (e.g., 258 brands and 5,251 mod-
els in our platform, and new iOS permission updates). While
some impact factors are out of system designer’s control, an
asymmetric design philosophy has the potential to address
the device diversity issues (e.g., 258 phone brands and 5,251
models in our platform), for example, design simplicity for
the users who need strong incentives to accommodate di-
versity (e.g., merchants); whereas design complexity for the
users who need little incentives to accommodate diversity
(e.g., couriers). Moreover, based on the in-depth understand-
ing of virtual beacons’ reliability in the wild, one can achieve
a hybrid system based on the tradeoff between physical bea-
cons (high cost, high reliability) and virtual beacons (low
cost, low reliability). For example, for high-end merchants re-
quiring more tight delivery time constraints, we can deploy
the physical beacons; whereas for normal merchants where
arrival detection is only used for data collection for time
estimation, we can deploy the virtual beacons. Importantly,
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based on APP usage data, we found the chance of courier
APPs going to background is much lower than that of mer-
chants because couriers have to actively engage with their
APPs to report order status, especially when they are near
merchants. Thus, in our VALID+, we let couriers to advertise
and merchants to receive to increase the reliability.

6.3 Performance Metric 2: Utility 𝑃 𝑡 ·𝑛Util
We use the overdue rate reduction to measure the utility 𝑃𝑡 ·𝑛Util
of a virtual beacon 𝑛 during time 𝑡 . We study two factors
impacting the utility as follows.
Impact of Demand/Supply Ratios on 𝑃𝑡 ·𝑛Util. The reason
for overdue orders is high demand and low supply in some re-
gions of cities, e.g., downtown.We compute the demand/supply
ratios in five different cities based on the order number (i.e.,
demand) and the courier number (i.e., supply) in their 5 km
proximity, which is the delivery range limitation. As shown
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in Fig.10, we found a
higher ratio leads to a
higher utility in gen-
eral, shown as the ab-
solute overdue rate re-
duction. These areas
typically have higher
overdue rates compared
to others, so VALID
works more effectively, which leads to better scheduling and
thus higher overdue rate reduction. Note that in our plat-
form, an 0.7% nationwide reduction in the absolute overdue
rate is significant because of 14 million daily orders.

Impact of Different Building Floors on 𝑃𝑡 ·𝑛Util. We found
that a virtual beacon device’s utility is not proportional to
the number of interacting users at its deployed location, but
proportional to the uncertainty of user behaviors (e.g., higher
floors and lower basements). In general, the ground floor has
the lowest overdue rate; whereas higher floors have higher
overdue rate due to uncertain indoor mobility to across
different floors. So if VALID can detect a courier at higher
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Fig. 11. Impact of Floor

floor merchants, it has the
potential to reduce over-
due rates of these mer-
chants for a higher utility.
As in Fig.11, the utility is
higher for VALID in higher
floors or lower basements
because the variance of the
courier mobility is propor-
tional to the indoor travel distance. This is because the higher
the merchant floor, the longer the distance from the mer-
chant to the building entrance, the more variance of the
couriers’ arrival time to the merchant. It leads to a higher

utility for VALID at these merchants for time estimation and
order assignment. These findings have the potential to pro-
vide practical design guidance for both our VALID+ (e.g.,
deciding where to let couriers to advertise indoor) and other
sensing systems in the wild.

6.4 Performance Metric 3:Participation 𝑃 𝑡 ·𝑛Part
Impact of Merchant Experience on 𝑃𝑡 ·𝑛Part. The participa-
tion rate (85% on average) is affected by the merchants’
choice because they can open and close the advertising at will.
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Fig. 12. Experience Impact

Fig.12 shows experience im-
pact measured by the time
they open on our platform.
Although we expect differ-
ent participation between
newer and older merchants,
there is no obvious correla-
tion between merchant ex-
perience and participation.

6.5 System-Human Synergy
In this part, we discuss the asymmetrical synergy between
system and human users (i.e., couriers) including (i) interven-
tion from the system’s notification to the couriers’ behavior
and (ii) the feedback from couriers’ behavior to the system.
Behavior Change due to System Intervention.
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Fig. 13. Reporting Behavior Change

We observe be-
havior changes in
couriers’ manual
reporting after we
add the “early re-
port warning” no-
tification. Fig.13
shows the time
difference between
detected (by VALID)
and reported ar-
rivals before and after the notification was added to their
APPs based on the nationwide detection results of VALID.
To show the behavior evolving process, we show the results
of 2 weeks, 1, 3, 6 and 10 months after the notification was
added. We found that the longer the notification was added,
the higher percentage of orders with the difference closer to
0, indicating the couriers have been improving their report-
ing behavior. In particular, the percentage of reporting with
errors smaller than 30 seconds increases from 36.1% to 49.5%
after three-month nationwide intervention, while increasing
subtly to 50.3% after 10 months. It indicates the marginal
effect of intervention decreases after longer time.
Behavior as Feedback to the System. In a retrospective
analysis with physical beacons and couriers’ GPS traces, we

10



investigated whether our VALID-based notification shown
to a courier for their potential early reporting behavior was
correct or not. Note that an incorrect notification is a re-
sult from multiple factors including VALID’s reliability (e.g.,
merchants’ and couriers’ smartphone hardware and soft-
ware), couriers’ mobility (e.g., picking up at the door but not
entering), and delivery process management (e.g., whether
entering building count as arrival). We have been working
together other teams to improve the notification quality.
At this point, we are interested to see given our interven-
tion, how would the couriers respond, i.e., stop reporting
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Fig. 14. Behavior as Feedback

(by clicking ‘Try-Later’)
or continue reporting
(by clicking ‘Confirm’).
As shown in Fig. 14, we
collect 3-month notifi-
cation data in a city un-
der consent after we
add the notification
function, and calculate
two ratios:
(1) Ratio of ‘Confirm’ clicks when the notification is wrong

(i.e., a courier’s behavior improves VALIDwhere a courier
arrived and reported but VALID did not detect due to
limited reliability, ‘Confirm’-ratio);

(2) Ratio of ‘Try Later’ clicks when the notification is correct
(i.e., VALID improves a courier’s behavior where a courier
did not arrived yet but want to report and yet stopped
when seeing our warning, ‘Try-Later’-ratio).

Ideally, we want both the ratios to be high so that we can
trust the feedback. As shown in Fig.14, both ratio is around
0.5 in the first month, which may be caused by random trial
clicks since couriers are not familiar with the mechanism; af-
ter the first month, ‘Confirm’-ratio increases as we expected,
but ‘Try-later’-ratio decreases, which means even under cor-
rect notification, couriers still tend to continue report even
he is not arrived yet. A possible reason for this phenomenon
is that in current business process, the system tends to trust
human report and has not penalized incorrect ‘Confirm’ or
‘Try-Later’ clicks. Therefore, the couriers tend to ‘Confirm’
to save time (no notification will pop up after ‘Confirm’) and
pretend to have been arrived. This phenomenon suggested
that the users improved VALID at a higher degree than VALID
improved the users (i.e., an asymmetrical synergy). However,
we are still working to filter out useful feedback (e.g. clus-
tered ‘Confirm’ feedback at specific merchants) to improve
the VALID (e.g., tune the parameters in ‘automatic arrival
report’ and adjust ‘notification mechanism’ accordingly).

Detailed Lesson Learned 3: Asymmetrical SystemHu-
man Synergy. Similarly to VALID, many systems (e.g., AI
systems) have been deployed to replace or complement the

human input due to unintentional human errors (e.g., driv-
ing assistance based on Machine-learning [3]) or intentional
human manipulation (e.g., fraud detection [11]). Typically,
these systems can provide some suggestions to their users
to potentially change their behavior, and, in turn, their users
can provide feedback to potentially correct these systems
in real time. This interaction enables a bidirectional system-
human synergy, i.e., a mutually beneficial partnership to
improve each other. We found that under our nationwide
intervention based on VALID’s detection results, this system-
human synergy is actually asymmetrical where VALID bene-
fits more from users’ behavior, but only a small percentage
(i.e., 14.2%) of users improves their behavior (e.g., stopped
the early reporting). It suggested that if we use courier feed-
back as "labels" to design machine learning models (e.g., our
VALID+ introduced in Discussion), the positive courier feed-
back (where couriers were correct and VALID was incorrect)
can serve as more accurate "labels" compared to the negative
feedback (where they were incorrect and VALID was correct).

6.6 Correlation between Different Metrics
Due to the space limit, we briefly report our main findings.
For the same group of VALID beacons, when the reliability is
low (e.g., < 50% for Apple phones as senders), its correlation
with both utility and participation is high, which (i) weakens
the utility due to limited data gathered for order assignment,
and (ii) lowers the participation because the overall bene-
fits are low. However, when their reliability is high, their
participation is more impacted by their utility.

7 DISCUSSIONS
7.1 Limitations of VALID
Limited Baselines. Many baselines could be implemented
to further validate VALID’s performance. A possible baseline
is a reversed asymmetric design where we could deploy a
system that is complex on the merchant side to show that
it scales or not (our hypothesis is that it does not). Another
baseline could be a nationwide physical beacons or Wi-Fi.
However, we argue that different from evaluations in a con-
trolled setting, VALID was mainly evaluated and operated
in the wild. Given the constraints we have, i.e., reliable in-
door coverage and low-cost nationwide deployment, other
baselines are almost impossible to be implemented with-
out significant investment. Further, some drawbacks of the
above baselines have been discussed in-depth [14, 42] based
on costs and incentives, which makes them hard to succeed
in a practice setting. Finally, due to privacy concerns, we did
not collect merchant smartphone sensor data, so our design
to optimize advertising is also limited, which makes some
baselines requiring detailed merchant data impractical.
Exploit by Merchants. In VALID, due to our design mini-
malism on the merchant end, we did not add sophisticated
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security design. So it is possible that some merchants will ex-
ploit VALID by switching off advertising when they were late
to prepare the order but the couriers are awaiting in store,
and then starting advertising when their orders are ready
to pick up. In this case, VALID would detect the courier just
arrived and thus the overdue responsibility is on the courier
side. However, in practice, we only have very limited com-
plaints from couriers related to such an exploit because the
couriers still report manually and sometimes take pictures
with timestamp as evidence of their on-time arrival.

7.2 Ethics, Privacy, IRB, and Data Release
The collection of the couriers’ and merchants’ data are un-
der their agreement as a part of the Privacy Policy and User
Agreement for couriers’ APP (Item 1.2.2 in [17]) and mer-
chants’ APP (Item 1.2.2 in [18]). In the agreements, couriers
and merchants are notified that the data are being collected
and their data will be used to support and improve products
and services (including BLE data as location). Any type of
raw data (GPS trace, BLE, etc.) are deleted from the database
completely after a preset life-cycle (i.e., 3 months for the cur-
rent policy), we only keep the statistical data (e.g., Fig. 7) for
the whole 3-year process. Our intervention notification was
exempted from IRB because it has no greater than minimal
risk. We have been working on aggregate and anonymous
data and did not focus on individuals. The couriers and mer-
chants ID are an anonymous keys to join different data sets.
As a result, our results cannot be used to trace back to indi-
viduals. We did not utilize any personal information, e.g., age
and gender. We will release one month of our data collected
in VALID for the research community to validate our results
and conduct further research. We will follow the data format
of a previously released data set from the “aBeacon” platform
[5] to protect privacy during the data release.

7.3 VALID+: Next Generation of VALID
Built upon VALID, we initiated a new system called VALID+
to retain its strengths and address its limitation of station-
ary beacons. We adopt a similar three-phase approach for
VALID+, and now we are in Phase I feasibility study. In
VALID+, under the couriers’ consent, we let couriers’ smart-
phones advertise as well by working as a mobile virtual
beacon in addition to merchant phones, which are also mo-
bile phones but they are mostly stationary in the merchant
store. If we have courier phones as mobile virtual beacons,
we can infer couriers’ indoor locations based on the massive
courier encounter events in a crowdsourcing manner [37].
The deployment and operation insights we obtained from
VALID have been guiding our development of VALID+ based
on machine learning with label data (i.e., courier feedback
data to our early reporting reminder) collected from our na-
tionwide behavior intervention in VALID. In particular, based

on these label data and our accounting data, we will train
high-performance learning models to continuously predict
working couriers’ status, e.g., indoor locations.

8 RELATEDWORKS
Table 4: Operational BLE Device Systems

.
Nation Deployment Site Application Scale
Iceland Eldh. museum [30] Localization 54 devices
U.S. Beale Street[38] Presence detection 100 devices
U.K. Gatwick airport [21] Localization 2,000 devices
India Railway station [20] Presence detection 2,000 devices
Brazil Tom Jobim airport [4] Localization 3,000 devices
China Shanghai [14] Presence detection 12,000 devices

Operational BLE System.As in Table 4, a few BLE systems
are operated in public sites such as airports or museums for
presence detection or indoor localization. The largest BLE
system we found is the aBeacon system in Shanghai with
12,000 devices. However, all of them require physical device
deployment, which is not scalable to nationwide operation.
Indoor Localization. Indoor localization is widely stud-
ied for presence detection, indoor navigation, etc, and are
mainly in two categories. (1) Using existing infrastructures.
Wi-Fi devices are the most common indoor infrastructure,
and their various signal characteristics are used to achieve
indoor localization such as RSSI [50], Time-of-Flight [9], and
Angle-of-Arrival [26]. However, their applications to nation-
wide detection are limited due to configuration costs. (2)
Deploying new infrastructures. Camera [29] and LED [52]
based approaches are recently introduced but are only val-
idated on a small scale because of the data feed restriction
and extra costs. Radio-frequency identification (RFID) based
approaches [45] are usually used for short-distance proxim-
ity measurements (i.e., within 1 meter) that are not reliable
for arrival detection, because the distance between couriers
and RFID sources cannot be controlled.

9 CONCLUSION
We introduce VALID, an indoor arrival detection system, from
its in-lab conception to its nationwide operation in 364 Chi-
nese cities in 30 months. VALID is built upon both oppor-
tunities and challenges of using smartphones as beacons
for arriving detection, considering a system design balance
between simplicity and complexity. We quantify VALID’s per-
formance by seven metrics related to cost and performance
in our nationwide operation in the wild. We identify three
key lessons regarding system scale evolution, reliability, and
system-human synergy we have learned. We envision these
lessons have implications for other systems requiring long-
term operationswith large geospatial coverage.Wewill share
one-month data of VALID with the research community to
reproduce and build upon our work.
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