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ABSTRACT
Instant delivery is an important urban service in recent years be-
cause of the increasing demand. An important issue for delivery
platforms is to keep updating the status of couriers especially the
real-time locations, which is challenging when they are in an indoor
environment. We argue the previous indoor localization techniques
cannot be applied in the instant delivery scenario because they
require extra deployed infrastructures and extensive labor work.
In this work, we perform the couriers’ indoor localization transpar-
ently in a predictive manner without extra actions of couriers by
existing data from the platform including order progress reports and
couriers’ trajectories. Specifically, we present TransLoc to predict
couriers’ indoor locations by addressing two challenges including
uncertain reporting behaviors and uncertain indoor mobility be-
haviors. Our key idea lies in two insights (i) couriers’ behaviors
are consistent in indoor/outdoor environments; (ii) localization,
as a spatial inference problem, could be converted to a temporal
inference problem. We evaluate TransLoc on 565 couriers from an
instant delivery company, which improves baselines by at most 72%,
and achieves a competitive result compared to a label-extensive
approach. As a case study, we apply TransLoc to optimize the order
dispatching strategy, which reduces the delivery time by 24%.

CCS CONCEPTS
• Information systems→Mobile informationprocessing sys-
tems; • Human-centered computing → Ubiquitous and mobile
computing systems and tools.
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1 INTRODUCTION
Instant delivery is an increasingly important urban service in the
recent several years driven by the increasing demand for quick prod-
uct delivery [48], especially in the background of the coronavirus
outbreak [41]. Compared with traditional delivery services such as
FedEx requiring days, instant delivery is an extremely fast delivery
service (e.g., 30 mins for food or 1 hour for grocery) conducted by
platforms such as PrimerNow [1], UberEats [47], DoorDash [15],
Postmates [34], Instacart [22], MeiTuan [32], and Eleme [16]. For
instant delivery, one of the most important factors is real-time loca-
tions of couriers, which are the key for delivery order dispatching
under its extremely short deadline [10] [27] [43]. If an order was de-
livered after the deadline, the delivery service provider may have to
pay an overdue fee to a customer. Different from outdoor locations
(i.e., GPS) that can be collected from couriers’ work smartphones,
large-scale indoor locations are typically not available but are es-
sential for real-time delivery dispatching in multi-floor buildings
in big cities, e.g., New York and Shanghai. We found we can save 7
minutes on average (i.e., counting for 25.9% of the delivery time)
by simply modifying the current dispatching strategy if we know
couriers’ indoor locations, which reduces the overdue rate by 2.5%
(as shown in § 7.6). This not only helps improve user experience
but also saves overdue fees for the platforms considering totally
more than 12 million daily orders.

To date, the indoor localization problem has been extensively
studied with techniques such as fingerprinting (e.g., WiFi ID [11]),
wireless signal modeling (e.g., RSSI [12], time of flight [2] and an-
gle of arrival [25]), and models based on smartphone inertial sen-
sors [50] (e.g., accelerometers, gyroscopes, magnetometers). How-
ever, compared with them, we emphasize two unique design goals
in the instant delivery localization solution: (i) No Additional Infras-
tructure/Label Investment: the solution should not require any addi-
tional infrastructure investment (e.g., ultra-bandwidth devices [29])
or extensive labeling efforts (e.g., manually collected indoor finger-
printing) for large-scale low-cost deployment. (ii) No Additional Hu-
man Input: the solution should not require additional participating
activities from couriers, i.e., the couriers just perform regular deliv-
ery and reporting on the smartphones. We name localization under
these requirements as transparent localization that is achieved
without any extra efforts from couriers or new infrastructures.

We explore two new opportunities to achieve transparent lo-
calization for instant delivery. (1) Order Progress Reporting: Af-
ter a platform assigns an order to a courier, it is mandatory for a
courier to manually report the order progress in 4 major stages
(shown in Fig. 1) on her/his smartphone including accepting an
order (𝑡0), arriving at a merchant (𝑡1), picking up the order (𝑡2), and
the order delivered (𝑡3), to inform the customer and platform the
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Fig 1: Order Progress Reporting

real-time order status for a better experience under short delivery
time. When couriers head to indoor merchants, we have two im-
portant temporal anchors (i.e., 𝑡1 and 𝑡2) to provide the context
of a courier’s indoor status. (2) Logical Localization Accuracy:
Instead of centimeter-level localization [54] [49] [2] that are expen-
sive to achieve in large-scale settings, we aim to design a cheaper
localization approach while still provide sufficient location infor-
mation for scheduling. We found, for instant delivery platforms,
the key factor to determine the courier scheduling is the worker’s
logical location (i.e., which merchant a courier is closest to). In this
case, the localization granularity of couriers could potentially be
relaxed to the logical accuracy on the merchant level, instead of
physical accuracy. Based on these two opportunities, our research
question is can we utilize order progress reporting to localize couriers
on the merchant level when they are indoor?

To answer this question, we perform a case study in the Al-
ibaba’s instant delivery platform in Chinese city Shanghai. Based
on a real-world field study, we found two key challenges when we
explore these two opportunities. (1) Uncertain Reporting Behav-
iors: The manual order progress reporting is extremely unreliable
with a significant number of early or late progress reports, espe-
cially in the arrive-at-merchant stage (i.e., 𝑡1) due to the overdue
penalty. Based on real-world data, we found 55.2% of orders have
early arrival reporting and 1.6% of orders have late arrival reporting
longer than 1 minute, which makes it challenging to associate these
timestamps to correct locations. (2) Uncertain Indoor Mobility
Behaviors: Reporting behaviors only provide sparse information
regarding the pickup merchant without continuous traces (e.g.,
other nearby passing merchants on the way), which cannot be used
to localize couriers in real time before arriving at pickup merchants.
In addition, the indoor maps may not be available for a large scale
deployment, which makes it even more challenging. We will show
the detailed analysis of these two challenges in § 2.3.

To address them, we design a prototype system called TransLoc
to utilize order progress data (i.e., three anchors per order with
uncertain location-time contexts) to localize couriers on the mer-
chant level. Our system is based on two key insights: (1) we found
most couriers’ outdoor/indoor reporting behaviors are intrinsically
consistent under certain context, which could be used to address
the uncertain reporting behaviors; (2) the original spatial inference
problem (i.e., logistical localization) could be converted to a tem-
poral inference problem (i.e., walking time inference), based on
which we could predict when a courier arrives at each merchant
and achieve localization in a predictive manner.

Considering the real-world constraints for large-scale commer-
cial platforms, instead of deploying expensive infrastructures (e.g.,
Wi-Fi maps or RSSI mapping), our work is to address a classic mo-
bile system problem in a data-driven and more scalable way. We

demonstrate the power of in-depth analytics and reuse on already
collected data, which is useful for improving the service quality to
customers, workers, and suppliers. By incorporating human behav-
ior modeling (i.e., reporting behaviors) in the system design, we
achieve localization without extra infrastructure support. Further,
we convert the classic spatial localization problem that requires
real-time signal detection (e.g., Wi-Fi and Bluetooth) into a tempo-
ral prediction problem (e.g., predicting the arrival time), which is
more feasible to be addressed in the delivery platform. As for the
detailed technique, we focused on its robustness and simplicity to
make it applicable in a large-scale deployment. Specifically, the key
contributions of this paper are given as follows.
• To our knowledge, we performed the first study of transparent
indoor localization in an instant delivery platform built on the
existing infrastructure with low overhead. We design TransLoc
based on a real-world setting of one week with 565 couriers, 128
merchants, and 14,743 orders. While TransLoc is a novel system
for instant delivery, we believe that our broader contribution is in
revealing a new direction in addressing the traditional indoor lo-
calization problem. Our key advantages are high penetration (i.e.,
all workers voluntarily report, which means we get reporting for
free with consent); high applicability (i.e., neither new deploy-
ment nor extra worker participation needed). Thus, its principle
can be easily generalized to other environments with two con-
ditions: (1) users report their status under a context; (2) users’
mobility is rather logically linear (e.g., from one place to another).
We will share our data for the benefits of the community.

• To address the reporting uncertainty, based on the reporting
behavior consistency, we first design a base model with common
behaviors regardless of indoor/outdoor environments. Then we
adapt it to the indoor environment using a transfer learning
technique with a newly introduced constraint and data samples.
To address the indoor mobility uncertainty, we design a symbolic
mobility graph based on indoor walking time, which converts
the localization problem into a walking time inference problem.

• We evaluate our system by the ground truth collected from de-
ployed Bluetooth Beacon devices in 27 indoor merchants, which
provides locations and time when couriers are nearby. Experi-
ments show TransLoc improves the localization accuracy by 64%
and 72% compared with Wi-Fi/GPS-based methods, and has a
competitive accuracy with a label-extensive fingerprinting-based
method. To quantify the benefit of our TransLoc, we conduct
a field study of optimizing order dispatching strategies given
predicted courier’s indoor locations. The results show we re-
duce the courier walking time by 141 seconds and lead to a 24%
improvement compared with the current dispatching.

2 BACKGROUND AND MOTIVATION
2.1 Data
2.1.1 InstantDeliveryOrder Progress. An order progress record
logs all the information since a customer places an order until the
order is successfully delivered. We only list the fields we use in this
paper in Table 1. Note that these timestamps are uploaded in real
time by courier smartphone apps, so we are aware of the real-time
status of couriers. In our study, we collected data of 14,743 orders
involving 565 couriers and 128 merchants in one week.
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Table 1: Order Progress Record Format and Example

Field Value

Order/Courier/Merchant ID O001/C001/R001
Merchant Location 31.231728, 121.380751
Accepting Order Time 01/01/2019 12:05:00
Reported Arrival Time 01/01/2019 12:16:00
Reported Pickup Time 01/01/2019 12:16:10
Reported Delivered Time 01/01/2019 12:31:00

Table 2: Coordinate Types

Type Detail Type Detail

0 Not Available 4 Cache
1 GPS Module 5 Wi-Fi
2 Last Coordinate 6 Cellular Tower

To facilitate the discussion, we categorize merchants into two
types: outside-merchant and inside-merchant, depending on
whether it is located inside a building. An outside-merchant means
people get into the merchant from an open area such as a merchant
on the roadside; an inside-merchant means the merchant is located
in an indoor environment such as a multi-floor building.

2.1.2 Courier Trajectories. Couriers’ trajectories contain con-
tinuous location information when couriers are in working, which
are obtained from APIs of an online map service [21] deployed in
couriers’ smartphones. The location information is uploaded to
the platform including coordinates, timestamps, and speeds in a
frequency of 20 seconds under courier consents. In addition, pro-
vided by the online map service, each coordinate is assigned with
a specific type, indicating how the coordinate is collected. We list
six types in Table 2 (there is no type 3 from the service API) and
two most common types are type 1 and type 5, which indicate if
the coordinates are directly from a GPS module (i.e., type 1) or
approximated locations from a WiFi localization method (i.e., type
5) when the GPS signal is not strong. Note that indicated by the
service provider, the type 5 WiFi localization has errors ranging
from 5 to 200 meters because of its mechanism of collecting the
locations of Wi-Fi access points [21]. The basic mechanism behind
is crowdsourcing GPS coordinates of nearby smartphones that can
observe the access points, which could lead to dozens of meters
away considering the long-range Wi-Fi signals [6]. All the data are
obtained legally under the couriers’ consent.

2.2 Problem Setting for Localization

Pickup merchant

12:10:2012:10:00 12:11:20

Closest merchant at each time
time

First
floor

Second
floor

Passing merchants

12:09:40

A
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CD
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Fig 2: Problem Setting Demonstration

Given the historical delivery order progress and trajectories
of couriers, we model their reporting behaviors (i.e., obtain the

correct historical arrival time) and learn their historical indoor
mobility models (i.e., estimate the walking time to each merchant).
In real-time localization, as shown in Fig. 2, our solution works
as two steps: detection and prediction. (i) Detection: we first detect
when (e.g., 12:09:40) and where (e.g., Gate 1) a courier enters a
building based on the above trajectory data uploaded every 20
seconds. (ii) Prediction: we then predict which merchant in a multi-
floor building is closest to the courier continuously (e.g., every 10
seconds) until (s)he arrives at the pickup merchant. For example,
𝐴 is the closest merchant to the courier at 12:10:10. Note that not
all the merchants are passed such as 𝐶 . Given these logical level
locations, the platform can dispatch real-time pickup orders to
potential couriers, e.g., the closest courier.

In our problem, different from the classic localization problem
that localizes people or devices based on real-time signals such
as Wi-Fi and Bluetooth, we achieve localization in a predictive
manner by predicting couriers’ arrival time to different locations
(i.e., merchants), which tells us where couriers are at a specific
time. Based on the predicted arrival time and their visited path,
we predict couriers’ locations at any given time after entering the
building, which are the same outputs of the classic localization
problems so we consider it a localization problem in our work.

2.3 Two Challenges
(i) Uncertain Reporting Behaviors: We analyze the courier’s
reporting behaviors by comparing the reported arrival time and
the actual arrival time from the ground truth (details in § 7). Fig. 3a
plots the proportion of the difference between the actual arrival
time and reported arrival time. We name the difference as reporting
error. It shows that (1) only 28.6% of the orders have the reporting
error within 1 minute; (2) about 55.2% of the orders have issues of
early reporting more than 1 minute; (3) about 19.6% of the orders
even differ by more than 10 minutes. The reason is that due to the
time-sensitive nature of instant delivery, the platform takes a strict
policy to penalize a late (i.e., overdue) delivery. Either merchants or
couriers should take responsibility depending on the late delivery is
because of late preparation or late pickup. Some couriers may report
the progress earlier than the real progress to avoid responsibility if
the delivery is finally overdue. Sometimes couriers may also forget
to report progress that leads to very late reporting. As a result,
the uncertainty of couriers’ reporting behaviors brings significant
challenges to our problem.
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Fig 3: (a) The difference between actual arrival time and re-
ported arrival time; (b) The average standard deviation (SD)
of walking time for each courier.

(ii) Uncertain Indoor Locations: If we can correct the uncertain
reporting, a straightforward way to localize couriers is based on
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their average walking speed and dead-reckoning on the map [50].
However, we found courier’s indoor mobility may be affected by
many factors such as routes, walking speeds, order assigned, and el-
evators. We show the uncertainty by studying the couriers’ walking
time from the same entrance of a multi-floor building to merchants.
Fig. 3b plots the average walking time Standard Deviation (SD)
between the same entrance and merchant for 70 couriers in our
tested mall. On average, couriers have a standard deviation of 226
seconds (around 3.8 minutes), which shows the great variance to
infer their indoor locations under different contexts. In addition,
indoor environment information such as indoor maps is not always
available compared with the outdoor. How to construct indoor
maps efficiently on a large scale is still an open problem [19]. In
our platform, it involves thousands of malls/buildings in different
cities, which are expensive and may not be realistic to obtain all the
indoor maps. To make our system more generic and practical, we
do not assume the availability of the indoor maps, which introduces
an extra challenge to localize couriers.

2.4 Two Key Ideas
We address these challenges by two key ideas:
(i) Consistent Courier Behavior for Outside-merchants and
Inside-merchants: Our goal is to localize couriers in the indoor
environment via courier reporting behavior modeling. Compared
with previous human modeling work with available labels [18] [20],
it is difficult to obtain the actual arrival time at the inside-merchants
based on the existing platform considering the inaccurate indoor
GPS signal.We argue that comparedwith inaccurate inside-merchant
arrival time, it is relatively easy and confident to obtain the arrival
time in an outside-merchant because we know when a courier ar-
rives at the outside-merchant by their trajectories. If the courier’s re-
porting behavior is consistent regardless (s)he heads to an inside/outside-
merchant, the model formulated for the outside-merchant reporting
behavior also has the potential to represent her/his reporting be-
havior at inside-merchants. To verify this intuition, we analyze
the correlation of reporting errors between outside-merchants and
inside-merchants.
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Fig 4: (a) The average reporting error of couriers at the
outside/inside-merchants; (b) Kolmogorov-Smirnov test on
the outside/inside-merchants reporting error.

We first plot the mean reporting error with a fitting line in Fig. 4a,
where each point represents a courier. We observed a positive
correlation for most couriers, i.e., if a courier has larger reporting
errors at outside-merchants, (s)he generally has larger reporting
errors at inside-merchants. To quantify the correlation statistically,
we conduct a Kolmogorov-Smirnov hypothesis test on individual
couriers’ behaviors under level 0.05. The null hypothesis is that

their behaviors are from the same distribution regardless of outside-
merchants or inside-merchants. We compute two values in the
test: Kolmogorov-Smirnov statistic (𝐷) and critical value (𝐷crit).
If 𝐷 < 𝐷crit, the null hypothesis is accepted. Fig. 4b plots the
computed values of each courier, and the diagonal line represents
𝐷 = 𝐷crit. We found there are 75.8% of the couriers are below
the line, which means they statistically have consistent reporting
behaviors. Given these two observations in Fig. 4a and 4b, we argue
that most couriers perform consistent reporting behaviors, which
provides the statistical foundation for a unified reporting model.
Indeed, Fig. 4a does not show a strong correlation. However, from
the hypothesis test result, we found our hypothesis of consistent
outside/inside-merchants reporting cannot be rejected for most
of the couriers. More importantly, Fig. 4a serves as a qualitative
result, which motivates us to study the reporting consistency. Our
evaluation quantitatively validates that the reporting consistency
can result in a good performance on the arrival time estimation.

(ii) Convert spatial inference to temporal inference: As afore-
mentioned in § 1, our work aimed to achieve logical merchant-level
localization considering the required accuracy of instant delivery.
Instead of solving it as spatial inference, we convert it into a tempo-
ral inference. The intuition is that if we know the walking time to
each merchant from a certain location (e.g., gate) and the visiting
sequence, we could potentially infer which merchant is nearest to
a courier at any given time after passing the gate. To this end, we
construct a symbolic mobility graph where each node represents a
merchant; each edge represents the connection (i.e., path) between
two merchants. Then the weight of edges represents the walking
time between nodes, in which way we can find the closest graph
node to a courier in terms of their walking time. Compared with
physical localization, an important benefit of a symbolic mobil-
ity graph is that the edge length is directly used to measure the
closeness between couriers and merchants in terms of the actual
walking time, while the physical distance may not be propositional
to the walking time considering the complex indoor environment.
In addition, comparing other physical partitions, the symbolic mo-
bility graph also helps us reduce computational complexity. For
example, one of the largest shopping malls in Shanghai has 57
merchants(nodes) covering more than 40 thousand square meters,
which leads to 10 thousand nodes if dividing the indoor environ-
ment into equal-sized grids (e.g., 2 by 2 meters [56]).

3 OVERVIEW
We present the overview of our system design in Fig. 5 including
three modules.
Delivery Platform: The platform contains all the functionality
of the existing instant delivery platform. We simplify it to three
components used in our work including (1) the trajectory repository,
(2) the order progress repository, and (3) the real-time trajectory
and order progress.
Reporting Module (§ 4): In this module, we model the reporting
behaviors of couriers to obtain the corrected arrival time.We first de-
sign a base model based on common features in both inside/outside-
merchants. Then we modify and adapt it to model the inside-
merchant reporting behaviors with unique observations for inside-
merchants, which finally outputs the corrected indoor arrival time.
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Localization Module (§ 5): Given the corrected arrival time in
the reporting module, we formulate the indoor walking time into
two-dimensional matrices where each entry represents the walking
time from an entrance to a merchant or from a merchant to another
merchant. Based on the walking time matrices, we construct a
symbolic mobility graph, which represents the visiting order and
time between merchants. In real time, given the trajectory and
the order progress of a courier, we search the most likely indoor
mobility path in the graph, which represents the logical indoor
location at any given time. Finally, these locations are feedback
to the platform to optimize order dispatching and generate new
trajectories and order progress.

4 BEHAVIOR MODELING FOR ARRIVAL
TIME PREDICTION AT MERCHANTS

In this section, we introduce how we model couriers’ reporting
behaviors by a base model and an advanced model.

4.1 Base Model for Arrival Time Prediction
4.1.1 Feature Extraction forArrival TimePrediction. We show
several features from two aspects: real-time features and historical
features. Note that these features are common for both outside-
merchants and inside-merchants. For an order, the real-time fea-
tures of a courier include:
• Accepting Time (AT) represents the time when a courier accepts
an order.

• Relative Reporting Time (RRT) is the time between the accepting
time to the reported arrival time (𝑡1 in Fig.1).

• Distance to Merchant (DM) is the distance to the merchant at the
reported arrival time.

• Concurrent Orders (CO): A courier may have multiple concurrent
orders from nearby merchants. This feature shows the number
of unfinished orders when a courier reports his/her status.

• Time Budget (TB): To ensure the on-time delivery, the platform
generally sets a time constraint for delivery deadline based on
the empirical study such as 30 minutes. When the time constraint
is approaching, couriers may report ahead of time. We define the
time budget as the remaining time to the delivery deadline when
the courier reports his/her status, e.g., arrival at a merchant.

The historical features of a courier include:
• Number of Historical Orders of Pickup merchant (NHOP): It
represents the delivery experience of a courier from a specific
merchant.

• Number of Historical Orders of a courier (NHO): It represents
the overall experience of a courier.

• Historical Average reporting Error of Pickup merchant (HAEP):
the average reporting error of historical orders of a courier at a
specific merchant.

• Historical Average reporting Error of All merchants (HAEA): the
average reporting error of historical orders of a courier at all
merchants.

Features Importance: We further study the importance of these
features based on the random forest algorithm. The feature impor-
tance is obtained based on the inherent feature of Random Forests
using impurity based ranking, which is a common approach used
in data mining [39]. The result is: HAEP(0.236) > RRT(0.176) >
DM(0.167) > CO(0.102) > NHO(0.093) > HAEA(0.084) > TB(0.078) >
NHOP(0.048) > AT(0.016). The larger the value is, the higher impor-
tance the feature is. A few interesting observations are implied by
the feature importance such as (1) HAEP with the highest impor-
tance implies couriers generally have stable reporting behaviors on
the same merchant; (2) AT with the lowest importance implies the
time of a day has a low impact on couriers’ behaviors.

4.1.2 Courier Grouping. In an ideal case, we should design a
prediction model for each courier, but the training data may not
be sufficient at an individual level and it could also lead to overfit-
ting. So, we classify couriers into groups based on their actual and
reported arrival time. As in Fig. 6, the reporting error of couriers
varies a lot, i.e., 12.9% of couriers have errors less than 60 seconds
and 22.3% of them are greater than 360 seconds. The principle of
grouping is that couriers in the same group should have similar
reporting behaviors (i.e., reporting errors) at the same merchants.
Formally, this principle can be presented by 𝑐𝑠𝑐𝑜𝑟𝑒 defined as

𝑐𝑠𝑐𝑜𝑟𝑒 (𝑐𝑖 , 𝑐 𝑗 ) =
∑
𝑚∈𝑀

𝐾𝑆 (𝑆𝑚𝑖 , 𝑆
𝑚
𝑗 ) (1)

where 𝑐𝑖 is the 𝑖-th courier,𝑀 is the set of all the merchants, 𝐾𝑆 is
the measurement of the Kolmogorov–Smirnov test, 𝑆𝑚

𝑖
is the set of

reporting errors of 𝑐𝑖 at the merchant𝑚. Given 𝑐𝑠𝑐𝑜𝑟𝑒 , we explore
the K-means algorithm with a different number of clusters. The
optimal number of the clusters is selected empirically based on the
model performance on clusters, which finally results in 10 clusters.

4.1.3 Model Formulation for Arrival Time Prediction. We
explore several machine learning algorithms and finally select a
multi-layer neural network [42] to predict arrival time for each
cluster for two reasons: (i) high accuracy, and (ii) easy to update
with new coming data. Especially, the updating ability is necessary
for our following modeling process in inside-merchant reporting.
Formally, we present the training process as finding

𝑤∗
𝑏𝑎𝑠𝑒

= argmin
𝑤

1
𝑁

∑
𝐿(𝜙 (𝑥𝑖 ,𝑤), 𝑦𝑖 ) (2)

where𝑤 is the learning parameter, 𝑁 is the number training sam-
ples, 𝐿 is the loss function such as the mean squared error, 𝑥𝑖 and
𝑦𝑖 is the feature and label of the 𝑖-th sample, 𝜙 is the training model
(i.e., a neural network), which is implemented with 8 hidden layers
with 48 nodes in each layer in PyTorch [35].

4.1.4 Label Extraction for Model Training. In order to train
the above model to predict actual arrival time, we need labels. If
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we assume the actual arrival time can be obtained accurately from
the historical GPS trajectories, we can use historical arrival time as
labels for model training. We first extract the arrival time from
the trajectories. Ideally, if a courier has arrived at a merchant, the
distance to the merchant is close to zero. However, in practice, the
distance may vary because of the erroneous coordinates of the
couriers or the merchants. In Fig. 7, we plot the shortest distance
between couriers’ and outside-merchants’ coordinates and found
that half of the shortest distances are more than 20 meters. To
address the problem, we explore the idea that even the nearest
distance is larger than zero, but the distance follows a common
trend, i.e., changes from decreasing to increasing, where the shortest
distance in the tread corresponds to the arrival time. In this way, we
obtain a stable estimation of the arrival time without introducing
any empirical distance threshold. However, the key assumption,
i.e., the actual arrival time can be obtained accurately from the
historical coordinates, is true for outside-merchants, but not true
for inside-merchants due to the large error of GPS indoor, which
will be addressed in our advanced model as follows.

4.2 Advanced Model for Arrival Time
Prediction at Inside-Merchants

4.2.1 Why thebasemodel is not enough? Given the basemodel
introduced in the last subsection, a straightforward approach is
to directly apply the learned model based on the same features
extracted from the inside-merchant reporting. We tested this ap-
proach in the inside-merchant reporting scenario but approved it
introduced much higher errors (details in § 7). The reason for the
failure is because of the key difference between picking up from
outside-merchants and inside-merchants that couriers still need to
walk in the building for a while. If we directly use the base model,
the predicted arrival time is closer to the building entering time
than the merchant arrival time inside the building. This difference
makes the model learned by outside-merchant labels do not work
well in the inside-merchant scenarios.

4.2.2 NewConstraint for Inside-merchant Scenarios. The dif-
ference between outside-merchants and inside-merchants also brings
us an opportunity to address the problem, which introduces a prac-
tical constraint that couriers’ arrival time cannot be earlier than the
building-entering time. In this case, we could potentially use this
constraint to adjust the predicted arrival time. To make use of this
factor, we first detect the building entering time and location of
couriers. More generally, we detect (1) the indoor/outdoor switch-
ing time, and (2) the indoor/outdoor switching location. In addition
to time, we also need the switching location because couriers may
enter the building from different entrances.

(1) Indoor/outdoor Switching Time: In the previous work, Li
et al. proposed to utilize various smartphone sensors to detect if a
user is in the indoor or outdoor [26]. Considering the design goal
of transparent localization, we only utilize the existing localization
module to detect the indoor/outdoor switching based on the data
from couriers’ trajectories.
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Fig 8: Couriers’ signals when they are near to the merchant
including three observed features: (a) distance to the mer-
chant and speed; (b) coordinate type (in Table 2) from smart-
phone localization modules.

Fig. 8 plots the observations of the courier’s status near to the
pickup merchant. The distance line in Fig. 8a shows the distance
between the courier and the pickup merchant, which indicates the
period from approaching the merchant (i.e., distance decreases) to
leaving themerchant (i.e., distance increases). Note that the distance
is measured by the GPS and can have great offsets when near to the
building. Similarly, the speed line has a similar trend. In addition,
we observe the distinct signal changes between approaching and
leaving the building in Fig. 8b that the value of the coordinate
type increases to more than one and fluctuates. Based on these
observations, we perform a two-step filtering process: (i) we extract
the target period based on the distance and speed signal. Specifically,
we detect the "plateau" in both distance and speed such as from
600 seconds to 1200 seconds in Fig. 8a, which gives a rough period
when the switching happens. (ii) based on the "plateau", we use a
sliding window approach (i.e., duration of one minute) to determine
if a courier is in an outdoor or indoor environment. In each sliding
window, we extract a few empirical features including:

• Minimum value of speed, coordinate type, distance;
• Maximum value of speed, coordinate type, distance;
• Average value of speed, coordinate type, distance;
• Standard deviation of speed, coordinate type, distance;
• First and last observation of the distance in the period;

We collect 7,000 data samples and manually label their indoor and
outdoor status by comparing the trajectories in each sliding window
to the building polygon. Based on the features and labels, we train a
random forest model [4]. In five-fold cross-validation experiments,
it shows 92% of the average accuracy. Based on the detected status,
we search two consecutive windows with changing indoor/outdoor
status (e.g., from the outdoor status to the indoor status) and average
the window start time as our indoor/outdoor switching timestamp.

(2) Indoor/outdoor Switching Location:To find the indoor/outdoor
switching location, the straightforward solution is to extract the
GPS locations in the corresponding outdoor/indoor switching times-
tamps. However, under testing, we found the average distance be-
tween the switching location extracted by GPS and the gate of the
building is 44.8 meters. The main reason is that (i) the GPS signal
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becomes volatile when near to the tall building; (ii) the GPS upload-
ing frequency is 20 seconds, which counts for 28 meters offset if
considering the average walking speed as 1.4 meters/second [5].
To reduce the distance error, we apply a DBSCAN algorithm to
cluster these switching locations into several clusters. Compared
with other clustering algorithms such as K-means, DBSCAN is more
effective for spatial clustering. Without concerning the number of
clusters, we only need to control the maximum distance between
points in the same cluster. Based on the clustering result, we assign
the clustering centers as our new switching locations, and the result
shows the distance error is reduced to 19.2 meters. Because we shift
the switching location, the corresponding switching time should
also be adjusted by the walking time between the previous and new
switching locations. Considering a short walking distance (e.g., a
few meters) between switching locations, we assume the walking
time is calculated by the distance between the switching locations
divided by the average walking speed.

Note that the intuition of clustering is to align couriers to the
same location before entering the building. In practice, instead of the
actual gate, we could make this "same location" as any location near
to the gate (e.g., a few seconds of walking distance) that couriers
have the same distance to the gate.

4.2.3 Model Adaption. Given the new constraint of switching
time and locations, it is not trivial to incorporate this constraint
to the previous model 𝜙 because it does not exist in the outside-
merchants. In fact, the switching time in the outside-merchants is
numerically equivalent to the label, which would introduce over-
fitting if considering it as a feature. To address the problem, we
design a model adaption approach based on transfer learning [33]
with hard constraints. The key idea is that we keep the base model
but explicitly incorporate the new constraint to the model tuning
process with new samples (i.e., approximated actual arrival time
introduced next paragraph) from the inside-merchant reporting
scenario. Formally, we present the adaption process as finding

𝑤∗
𝑎𝑑𝑣𝑎𝑛𝑐𝑒

= argmin
𝑤

1
𝐾

∑
𝐿(𝜙 (𝑥𝑖 ,𝑤), 𝑦𝑖 )

𝑠 .𝑡 .𝜙 (𝑥𝑖 ,𝑤) > 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝐾

(3)

where 𝐾 is the number of new samples from the inside-merchant
reporting scenario, 𝑒𝑖 is the entering time for 𝑥𝑖 , 𝜙 (𝑥𝑖 ,𝑤) > 𝑒𝑖
performs as the constraint.

(1) Approximated Labels formodel training related to inside-
merchants: We perform the same feature extraction process as
the outside-merchant reporting behavior. However, compared with
the outside-merchant reporting behavior, there is no explicit data
to be considered as the training labels because of the unreliable
GPS of couriers when they are indoor. To address this issue, our
intuition is that when a courier enters and leaves a building in a
relatively short time Δ (e.g., the merchant is near to the entrance
of the building), the arrival time as labels can be approximated by
the median time between her/his entering and leaving the building.
We further refine these actual arrival times by collecting the ones
with no waiting time since we know the courier departure from
inside-merchants as well as shown in Fig.1. To verify our intuition,
we first show the indoor duration between the switching time (i.e.,
from entering a building to leaving a building) in Fig. 9. We found
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there are 1.6% of the orders have a duration lower than 30 seconds
(Δ) (i.e., the first bar in Fig. 9), which has the potential to be our
approximated labels. We compare these approximated labels with
separately-collected ground truth (introduced in Implementation)
under different thresholds in Fig. 10. The x-axis is the threshold Δ to
select approximated labels and the y-axis is the average difference
between the approximated labels and the ground truth. We found
the approximation error is 5.7 seconds given the threshold of 30
seconds, which provides feasible labels for our modeling.

(2) Model Training: In the training process, we perform a
parameter-level transfer learning [33] that the initialized parameter
𝑤 is the learned parameter𝑤∗

𝑏𝑎𝑠𝑒
from the base model. Given the

constraint, Eq. 3 cannot be easily solved with conventional opti-
mization algorithms such as Stochastic Gradient Descent. To solve
Eq. 3, we utilize a conditional gradients method [38] and the details
are omitted given limited space.

5 COURIER LOCALIZATION FOR
INSIDE-MERCHANTS

5.1 Intuition on Indoor Walking time
To implement predictive indoor localization, when a courier heads
to pick up orders, we ask two questions: (i) what merchants will
the courier pass? (ii) When will the courier pass each merchant?

Gate R1 R2

T(Gate, R1) T(R1, R2)

T(Gate, R2)

Fig 11: An example with three historical orders.

Take an example in Fig. 11 with one building gate and two mer-
chants 𝑅1 and 𝑅2. We denote 𝑇 (·, ·) as the duration between two
arriving timestamps. 𝑇 (𝐺𝑎𝑡𝑒, 𝑅1) and 𝑇 (𝐺𝑎𝑡𝑒, 𝑅2) represent the
walking time to 𝑅1 and 𝑅2 from the building gate. When a courier
picks up orders in 𝑅2, we are interested in if the courier passed
𝑅1. If so, we predict that a courier would be near to 𝑅1 at time
𝑇 (𝐺𝑎𝑡𝑒, 𝑅1) on the way to 𝑅2. Given the intuition, we solve two
problems including the walking time and the visiting order.

5.2 Indoor Walking Time Estimation
In our setting, we have two kinds of walking time: (i) time from
entrances (e.g., building gate) to merchants, and (ii) time from mer-
chants to merchants. Based on the switching time and predicted
arrival time, we could directly obtain the walking time from en-
trances to merchants. However, we found, due to the limited visited
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merchants of each courier, the obtained walking time is not com-
plete. Fig. 12 plots the percentage of merchants that a courier visited
in a building. We found most couriers only visited less than 10%
of the merchants. Another peak appears in 60% for those couriers
working frequently in this area. If we create a two-dimensional
matrix with the size of #𝑐𝑜𝑢𝑟𝑖𝑒𝑟𝑠 × #𝑚𝑒𝑟𝑐ℎ𝑎𝑛𝑡𝑠 to represent the
walking time of each courier to each merchant, then the matrix
sparsity would be 77% in our scenario. In addition, the walking
time from merchants to merchants is also not complete. Fig. 13
shows the pickup merchants where a courier visited after entering
a building. We found a courier would pick up orders from multiple
merchants with a probability of 32%, which leads to movements be-
tween merchants. For the rest of 68%, we cannot obtain the walking
time from merchants to merchants.
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Motivated by the data sparsity problem in recommendation sys-
tems, we infer the missing walking time in a collaborative filtering
manner. Suppose we have 𝐶 couriers and𝑀 merchants. Based on
these observations, we construct two kinds of walking time ma-
trices: a courier-merchant matrix 𝑋 with 𝐶 rows and 𝑀 columns
where each entry is a courier’s walking time from the gate to a mer-
chant; a merchant-merchant matrix 𝑌 with𝑀 rows and𝑀 columns
representing the walking time between all𝑀 merchants for a partic-
ular courier (we have𝐶 of these matrices 𝑌 ). In a general approach,
we apply non-negative matrix factorization (NMF) to each of the
matrices with the multiplicative update (shown as Eq. 4).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 | |𝑋 −𝑊𝐻 | |2𝐹 ,𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 | |𝑌 − 𝑅𝑆 | |2𝐹 , 𝑠 .𝑡 .𝑊 ,𝐻, 𝑅, 𝑆 ≥ 0

𝑊 =𝑊 · 𝑋𝐻𝑇

𝑊𝐻𝐻𝑇
, 𝐻 = 𝐻 · 𝑊𝑇𝑋

𝑊𝑇𝑊𝐻
,𝑅 = 𝑅 · 𝑌𝑆

𝑇

𝑅𝑆𝑆𝑇
, 𝑆 = 𝑆 · 𝑅

𝑇𝑌

𝑅𝑇𝑅𝑆
(4)Based on𝑊 ,𝐻 (or 𝑅, 𝑆), we train a neural network [42] to predict

missing walking time. The training input is the concatenation of𝑊
and 𝐻 (or 𝑅 and 𝑆) in the corresponding cell, and the training labels
are the known walking time from predicted arrival time (or visiting
between merchants). Our implementation is based on a neural
network with 8 hidden layers and 32 nodes in each layer, which is
trained in five-fold cross-validation experiments. Specifically, we
randomly split the known walking time into five-fold and choose
one-fold as a testing set when training the neural network.

5.3 Symbolic Mobility Graph Construction
Based on the complete walking time, we design a solution to infer
the visiting order based on a symbolic mobility graph, where each
node is a merchant and each edge represents a path between them.
The weight of each edge is the walking time. The advantage of a
symbolic mobility graph lies in its simplicity without introducing
complex environmental factors such as routes and elevators. This
is motivated by the work done by Wang et al. [51] where they try
to estimate vehicular travel time without specifically discussing

Algorithm 1: Symbolic Graph Construction
Input:Matrix 𝑋 , Matrix 𝑌 , threshold 𝛼
Output:Mobility Graph

1 𝑇𝑥 ,𝑇𝑦 : walking time matrices;
2 𝑇𝑝 (𝑝) : walking time on path 𝑝; 𝑃 as an empty path set
3 Sort all the nodes by 𝑇𝑥 and store in a min-heap 𝐻 .
4 A = 𝐻.𝑝𝑜𝑝 (), 𝑃 .𝑎𝑑𝑑 (𝑃𝑎𝑡ℎ(𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒,𝐴))
5 while H is not empty do
6 next = 𝐻.𝑝𝑜𝑝 ()
7 𝑚𝑖𝑛_𝑝 =

𝑎𝑟𝑔𝑚𝑖𝑛𝑝∈𝑃 |𝑇_𝑥 (𝑛𝑒𝑥𝑡) −𝑇𝑝 (𝑝) −𝑇𝑦 (𝑝.𝑡𝑎𝑖𝑙, 𝑛𝑒𝑥𝑡) |
8 𝑚𝑖𝑛_𝑒𝑟𝑟 = |𝑇_𝑥 (𝑛𝑒𝑥𝑡) −𝑇𝑝 (𝑝) −𝑇𝑦 (𝑝.𝑡𝑎𝑖𝑙, 𝑛𝑒𝑥𝑡) |
9 if 𝑚𝑖𝑛_𝑒𝑟𝑟 < 𝛼 then
10 new_path =𝑚𝑖𝑛_𝑝 + 𝑛𝑒𝑥𝑡
11 𝑃 .𝑎𝑑𝑑 (𝑛𝑒𝑤_𝑝𝑎𝑡ℎ)
12 else
13 𝑃 .𝑎𝑑𝑑 (𝑃𝑎𝑡ℎ(𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒, 𝑛𝑒𝑥𝑡))

factors such as routes and traffic lights. We encapsulate indoor
factors into the walking time between nodes instead of explicitly
including them in the design.

Our idea is that if a merchant appears on the path to another
pickupmerchant, then total walking time should be equal to the sum
of the two sub-period walking time. Take an example in Fig. 11. If
𝑅1 is on the path to 𝑅2, then𝑇 (𝑅1, 𝑅2) ≈ 𝑇 (𝐺𝑎𝑡𝑒, 𝑅2) −𝑇 (𝐺𝑎𝑡𝑒, 𝑅1).
To this end, we design an iterative approach to find the path to all
the merchants. We first sort all the nodes and select the one with
minimum walking time in 𝑋 as our initial node. It is straightfor-
ward that there is no previous node before the initial node since
it is the minimum walking time. Then we set our first path from
the entrance to the initial node. For the following nodes, we it-
eratively check existing paths and choose the one satisfying our
approximation error of 𝛼 . Otherwise, we consider there is a direct
path from the entrance to the node without passing other nodes.
The detailed algorithm is shown in Algorithm 1. Different from the
multi-dimensional scaling method [56] that only provides relative
locations, we also infer the visiting order between them.

5.4 Real-Time Predictive Localization
We introduce our algorithm for real-time localization. The input
includes the pickup merchant (obtained by current orders), real-
time GPS, walking time matrix of the courier, and the symbolic
mobility graph. As the courier moves near to the building (i.e., 500
meters), we start to detect when the courier enters the building to
determine the switching location 𝑂 and time 𝑡𝑜 . Then we retrieve
the corresponding walking time matrix and the symbolic mobility
graph. Based on the path from the symbolic mobility graph, we
determine which merchant is the closest one in real time to provide
the merchant-level localization.

6 IMPLEMENTATION
(1) System Overview. We implement a prototype system in the
[anonymous] platform, one of the largest food delivery platforms
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Fig 14: Instant Delivery Platform with TransLoc

in Chinese city Shanghai. Fig. 14 plots the abstract but general com-
ponents in instant delivery platforms, where customers, merchants,
and couriers upload the real-time order status and trajectories to
the platform. Based on this information, the platform dispatches
incoming orders to different couriers every 30 seconds. Without
changing the existing platform structure and workflow, our system
TransLoc performs as a plug-in component to predict the couriers’
indoor locations based on the same real-time information, which is
then sent to the dispatching scheduler component to optimize the
dispatching strategy.
(2) Ground Truth of Indoor Locations/Delivery Time. As a
prototype, we select a shopping mall with 65 merchants as the
testbed, among which we obtain the consents from 27 merchants to
deploy Bluetooth beacon devices. The devices are based on model
nRF51822 working with a frequency of 800ms and transmission
power of -60dBm. Each Beacon device is registered with a unique
id and is bind to one and only one merchant, and continuously
broadcast Bluetooth signals. We deploy them in merchant entrances
as there are minimal obstacles between couriers and beacons to
reduce environmental effects. The courier’s smartphone detects the
Beacon device id (i.e., UUID) and the signal strength, which implies
the courier is near to the merchant with the beacon. Considering
the smartphone heterogeneity and possible unstable signals, we
follow the idea in [40] that it is more stable to localize by the signal
strength trend, i.e., changes from increasing to decreasing, instead
of a threshold with a concrete value. In this way, we collect the
ground truth as the time when the detected signal strength reaches
to the lowest in the trend. Note that this ground truth serves for
evaluation of both the indoor locations and delivery time.
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(3) Ground Truth Analysis on Merchants and Waiting Time.
We analyze collected ground truth by the received RSSI from the
beacons in the passing merchants and pickup merchants. Fig. 15
shows the min and max detected RSSI from beacons in passing
and pick merchants. The observation is that the min/max value of
RSSI in the pickup merchants is higher than that in the passing

merchants. This is because the couriers generally pick up food inside
the merchants, which makes them closer to beacons. In addition,
we analyze how long a beacon is continuously detected both in
passing merchants and pickup merchants in Fig. 16. We found the
duration distribution in the passing merchant and pickup merchant
is very similar, which indicates most couriers do not need to wait
at the merchants when picking up and they move similar to the
passing merchants. It also implies that there is a limited impact of
the waiting time in indoor walking time.

7 EVALUATION
7.1 Methodology
7.1.1 Setting. We train the reporting model based on the report-
ing behaviors from outside-merchants and a few estimated training
labels from inside-merchants, both of which are completely differ-
ent from the ground truth collected from beacon devices in our test;
(ii) in our training process, we follow the standard of dividing the
dataset into training, validation, and test set to avoid overfitting.

7.1.2 Metrics. We first evaluate the reporting behavior modeling.
The metric is to compare the predicted arrival time with the ground
truth and defined as the absolute error in Equation 5,

𝐴𝐸𝑖 = |𝑦𝑖 − 𝑦𝑖 | (5)

where 𝑦𝑖 and 𝑦𝑖 is predicted arrival time and the ground truth of
the 𝑖𝑡ℎ order, respectively.

For indoor localization, we are interested in two metrics that
matter the most for the platform: (i) detection rates: how many
passing merchants are correctly detected? (ii) for those detected
merchants, what is the error between predicted time and ground
truth? To this end, we define two metrics: the detection rate (DRate)
in Equation 6, and the absolute error (AE) between the predicted
time and the ground truth (the same as Equation 5).

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐷𝑅𝑎𝑡𝑒𝑖 ) =
#(𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡)𝑖
#(𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝑀𝑒𝑟𝑐ℎ𝑎𝑛𝑡)𝑖

(6)

7.1.3 Baselines. We introduce three baselines for the evaluation,
each of which is the representative work of localization in different
categories. We do not include the methods required sophisticated
devices such as ultra-bandwidth [29], or antennae arrays [54], con-
sidering its practical constraint in large-scale deployment.
• GPS based method(GPS): We utilize received GPS signals to local-
ize couriers, which is considered as the low-bound performance
in indoor localization. If the GPS coordinate is within 10 meters
of the merchant location, we consider it as correct detection. The
AE is calculated by the ground truth to the time when being
closest to the merchant.

• Wi-Fi Crowdsourcing(WFC) [63]: A widely used commercial
method for indoor localization is based on Wi-Fi crowdsourcing.
Companies maintain a database mapping the Wi-Fi access points
to observed GPS coordinates from crowdsourcing. When a device
scanned an access point existing in the database, we retrieve its
GPS coordinates. In our work, shown in Table 2, coordinates
with Type 5 are exactly obtained by Wi-Fi crowdsourcing, which
are served as the localization result based on WFC. Since WFC
localization also returns GPS coordinates, we use the same DRate
and AE calculation method as the GPS baseline.
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• Fingerprinting/landmark-based method(FP) [50]: This method is
widely studied in academia but is deployed on a large scale be-
cause of the expensive cost of collecting fingerprinting databases
in different buildings. In our scenario, we randomly select bea-
cons as pre-collected fingerprinting locations. That is, when couri-
ers are near to these fingerprinting locations, we can know their
locations. Other locations between fingerprinting locations are
estimated by dead-reckoning on average walking speed [50] (e.g.,
we assume the indoor map is available in FP baseline). Introduc-
ing inertial sensors could definitely improve the performance.
However, the purpose of our fingerprinting based baseline is to
show if our systemwithout additional labor can perform similarly
comparedwith the labor-intensive method. From this perspective,
we do not introduce more delicate baselines in the paper.

Note that the baseline FP cannot be well fit our actual business
scenario because of the large-scale deployment constraint. For the
purpose of comparison, we assume the availability of required
information in the baselines. The comparison may be unfair to our
system but could be considered as a measurement that how close
our method is approaching the performance of the baselines with
expensive deployment. Collecting more smartphone sensor data
could improve performance. However, our approach can serve as a
lower-bound solution without any lower-level sensor data input to
explore what is the performance in this setting.

7.2 Overall Performance
We show the performance of reporting behavior modeling in Fig. 17
including both inside-merchants and outside-merchants. The coor-
dinate zero in X-axis represents the range between 0 to 10 seconds.
We found the absolute error of the system on outside-merchants is
112 seconds, and that on inside-merchants is 133 seconds. When
we dig into the error distribution of inside-merchants, it shows 42%
predictions have errors lower than 10 seconds, and 60% is lower
than 30 seconds. The large mean error is mainly because of the
errors in the skewed long-tail. To show the effect, we use our pre-
dicted arrival time to re-compute the reporting errors in Fig. 18,
compared with the original reporting errors. The result shows the
percentage of reporting errors within 1 minute is increased by 57%.
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We then evaluate the detection rate DRate. Fig. 19 plots the CDF
of the detection rate of TransLoc compared with baselines with the
order is FP > TransLoc > GPS >WFC. More specifically, the average
detection rate of TransLoc is 0.45, compared with 0.49 of FP, 0.06 of
WFC, and 0.31 of GPS. We found TransLoc’s performance is close
to FP’s, which proves its effectiveness even without the expensive
deployment cost of FP. Surprisingly, we found the detection rate
of GPS is higher than WFC. This is because the WFC has only

limited recorded access points in the database compared with easily
accessible GPS, which limits its detection ability.
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Fig 20: Localization Error
We further evaluate the localization error. Fig. 20 plots the er-

rors of our system and baselines. The performance order is FP >
TransLoc > WFC > GPS. Among the localization error, if we con-
sider AE < 30 seconds as correctness, we found 24% of the results
are overestimated and 19% are underestimated, which are evenly
distributed around the ground truth. Quantitatively, the mean error
is 31 seconds of FP, 42 seconds of TransLoc, 126 seconds of WFC,
and 162 seconds of GPS. It shows TransLoc improves the WFC and
GPS methods by 64% and 72%, which has close performance as FP.
Similarly, we found TransLoc’s accuracy is close to FP’s. Compared
with those two methods, WFC and GPS based methods have higher
errors. This is because the WiFi signal has a high penetration abil-
ity, which leads to early detection. GPS’s low precision is mainly
because of its natural weakness in indoor environments.

7.3 Importance of Technical Components
We analyze the importance of our technical components by compar-
ing the results between our model and several variations including:
• TransLoc without transfer learning (w/o-transfer): A key tech-
nical contribution of our system is to use transfer learning to
model human behavior in different scenarios. In this variation,
without transfer learning, we directly use the behavior model
learned from the outside-merchant scenario without adaption.

• TransLoc without the new factor constraint (w/o-constraint):
The entering time and location is an important factor to optimize
the model. In this variation, we implement the transfer learning
based model adaption without the introduced constraint.

• TransLoc without grouping (w/o-grouping): We show the effect
of grouping by a variation without grouping.
We show the comparison in Fig. 21 and found𝑤𝑡 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 is

the variation with worst performance, which implies the transfer
learning component is of great importance. The lesson we learned
is that even most couriers are statistically consistent in different
scenarios (shown in Fig. 4b), it cannot lead to good experiment
performance without careful adaption. Further, both the constraint
and grouping component result in a positive impact on the system.
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7.4 Evaluation on Robustness
We evaluate the robustness of our system from two perspectives:
the environmental impact and the human impact. Specifically, we
consider (i) the pickup merchants on different floors; (ii) couriers
with different experiences.
Performance on different floors: Fig. 22 shows the localization
performance when couriers head to pickup merchants on different
floors. We found our system performs the best when on the first
floor because of the less negative environmental impact such as
elevators. In Fig. 22, the main difference exists in the low error
areas, i.e., 0-100 seconds, that our system is more likely to achieve
low errors on the first floor than others.
Performance on couriers with different experiences: Differ-
ent couriers may have different behaviors if they are new to the
environment, i.e., a shopping mall. To show the impact, we select
couriers from two groups: (i) coming to the mall building only
once in our observed week (new couriers); (ii) coming to the mall
building every day (experienced couriers). Fig. 23 shows the com-
parison of those two groups of couriers that the system shows
better performance on experienced couriers. The main reason is
that (i) experienced couriers are familiar to the indoor environment
better and have more stable behaviors; (ii) there is less data for the
new couriers to learn the walking time matrix.
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7.5 Evaluation on Scalability and Overhead
We show the scalability of the system by showing its average per-
formance in five-fold experiments with different percentages of
couriers in Fig. 24. Compared with the full couriers, we found the
system has a higher error when the percentage of couriers is low
(e.g., 20%). The main reason is that it requires sufficient couriers to
construct the walking time matrix using NMF. In a higher percent-
age of couriers (i.e., after 60%), the performance is more stabilized.

We further evaluate the overhead of our system. We implement
our work in a server equipped with a Xeon CPU E5-1660 (only a
single core is used) and a Tesla K40c. Thanks to the efficiently de-
signed features, our model finishes training in our tested shopping
mall with 20 seconds, which makes our system could be updated
frequently with new data. In the real-time inference, the result
is based on the path in the symbolic mobility graph and walking
times, which makes it a linear time algorithm proportional to the
number of nodes in the graph. More importantly, our system can
be implemented mall by mall independently, which promises its
ability for distributed deployment on a large-scale.

7.6 Application: Improving Platform Order
Dispatching Performance

To evaluate the benefit of our system, we show how TransLoc can
help optimize an order dispatch strategy with indoor localization.

Our platform currently improves efficiency by assigning the orders
from the samemerchant to the same courier. For example, if the gaps
between two orders from the same merchant are not significantly
long (e.g., 10 minutes), these two orders would be dispatched to the
same courier. Without indoor localization, a practical problem is
that couriers may have left the merchant when receiving the second
order from the platform, which forces couriers to go back to the
merchant again and leads the redundant walking time. We analyze
it by introducing a measurement redundant time (RT) calculated as
RT = Second Order Dispatching Time - First Order Pickup Time, where
First Order Pickup Time denotes the time a courier picks up an order
from a merchant (e.g.,𝑚) for the first time after entering the mall;
Second Order Dispatching Time denotes the time that the platform
dispatches a second order of𝑚 to the same courier. The negative RT
means both orders are dispatched before couriers’ arrival, which
does not introduce any redundant walking time. Otherwise, the
positive RT means the second order is dispatched after couriers’
first arrival, which indicates a go-back pickup with redundant walk-
ing time. We plot the CDF of RT in Fig. 25 (i.e., Raw RT) and found
that most of the second orders are accepted later than couriers’ first
arrival time with 7 minutes on average.
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Fig 25: Redundant Time

To reduce the redundant walking
time, we utilize the outputs from
our system. As a case study, we add
a constraint to the current dispatch-
ing strategy. When dispatching the
second order, if the walking time
between a courier’s current indoor
location and the pickup merchant is
larger than a time threshold (i.e., 3
minutes in our study), we simply dispatch this order to other couri-
ers who are heading to the merchant. Otherwise, if the walking
time is less than 3 minutes or no other couriers are available, we did
not change the dispatching that still makes the courier go back to
pick up the order. Based on this strategy, we plot the experimental
result as New RT in Fig. 25. We finally improve 21.3% of the orders
and result in 349 seconds RT on average, which improves the raw
RT by 24% and reduces the overdue rate by 2.5%.

8 RELATEDWORK
Instant Delivery: Many works on the study of instant delivery
problem focus on the products delivery [17] [31] [9], especially the
recently increasing trend on the food delivery study [61] [23] [28] [58].
Ji et al. [23] provide a task grouping method for food delivery ser-
vices to reduce the waiting time of users. Liu et al. [28] present a
crowd-sourcing based food delivery approach that utilizes the taxis
to support on-demand take-out food delivery. Yuan et al. [58] deploy
a carpooling system for food delivery by a negotiation algorithm to
improve the efficiency and users’ utility. Compared with previous
works focusing on scheduling optimization, our work utilizes an
indoor localization method to improve delivery efficiency.
Indoor Localization:Many works on indoor localization utilize
the static infrastructures, such as WiFi [49][30][52] [45] [53], Bea-
cons [7][8][3], RFID [12] [29] [14], visible lights [59] [60] [44], etc.
For example, Xie et al. [53] designed a device-free Wi-Fi tracking
system. Zhang et al. [60] utilized ubiquitous visible lights for indoor
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localization. Ma et al. [29] implemented ultra-wideband localiza-
tion for deployed RFID tags. The basic triangulating based localiza-
tion approaches are not stable because of the multiple path prob-
lem [24] [49]. Even approaches are designed to address the problem,
it is not clear how to apply on a large scale. Other approaches re-
quire pre-collected fingerprinting datasets or pre-deployed devices,
which are expensive and not practical on a large scale. In our work,
we did not rely on any extra deployment and is easy to be extended
to a large scale. In addition, there are also many works based on the
smartphones [36] [56] [25] [46] [62] [50] [37]. In these approaches,
they generally fit in a few buildings with prior knowledge such as
floor maps and not scalable to different environments. Further, con-
tinuous tracking requires a significant cost of energy [57], which
generally cannot support couriers all day long. In our work, couriers
are not required to perform any extra action so we do not introduce
extra energy consumption. The most similar work is done by Yang
et al. [55] focusing on localization on highways that is significantly
different from our indoor environment.

9 DISCUSSION
Lessons learned: (1) The key lesson is that we can reduce infras-
tructure deployment by incorporating human behavior analysis
and modeling. By comparing to the baseline of FP (i.e., in Fig. 20),
we found our predictive approach can achieve a relative approach-
ing performance. This insight gives an implication that we could
use prediction methods to replace physical deployment in certain
situations to reduce the overhead. (2) Based on our ground truth, we
found that our system can achieve 10-second errors of arrival time
prediction for more than 42% of orders as shown in Fig. 17, which
reduces the reporting errors by 57% as shown in Fig. 18. It indicates
that we can incorporate human behavior to design systems when it
is highly predictable. (3) For the system robustness, we also found
that both lower-level floors (Fig. 22) and more courier experiences
(Fig. 23) have positive impacts on localization results, which guides
our future system deployment. Our system also benefits from more
couriers to reduce errors, and it suggests our system is potentially
scalable to more couriers (Fig. 24). (4) Accuracy localization has
the potential to improve the order dispatching by finding the most
appropriate couriers as shown in Fig 25. It leads to the shorter de-
livery time and a lower overdue rate, thus higher efficiency and
profit of the delivery platform, which is a strong motivation for
the delivery platform to invest in couriers’ indoor localization. (5)
A major advantage of our system is that it does not introduce an
extra burden to the main business. Our method only utilizes cur-
rently collected data from couriers’ work smartphones with no
effect on their regular work. We utilize existing techniques because
of robustness and reliability, which also benefits easy maintenance.
Limitation: (i) In our studied period, the result is based on the
general cases without specifically modeling the outlier cases, which
works well in majority cases. As for outliers, we envision our system
could adapt it by specifically modeling couriers’ behaviors based on
the data from an outlier context such as in the rush hour or a holi-
day. With that, we could apply the same system but with different
models to implement localization. (ii)Our data is merchant/courier
specific. As a business process for a courier or a merchant to join the
platform, it is mandatory to collect the necessary data to enable the

delivery service. Further, our study is based on a one-week period.
For new couriers/merchants after one-week data accumulation, we
envision our system could have the same performance on these
couriers.
A/B testing: In our platform, our work is the first pilot study to
provide indoor localization in a real setting. Instead of comparing
different groups of couriers, our A/B testing is conducted by show-
ing the scheduling efficiency with and without our localization
output in the field study, which shows the improvement over the
current scheduling service (thus, the benefit of our system).
Generalizability:We implement and evaluate our system in one
real-world platform for one week with 565 couriers, 128 merchants,
and 14,743 orders in one city. But we believe the key idea can be
generalized and adopted in many commercial platforms under two
conditions: (1) the users report their status under a context; (2)
user’s mobility is rather logically linear, i.e., couriers visit merchants
sequentially one by one without other stops in the middle and can
be linearly represented by their arrival time. For example, there are
many instant delivery platforms such as DoorDash, InstaCart, and
Amazon Primer Now, which almost share the same workflow as our
tested platform. In other non-instant delivery scenarios, we could
also find similar observations. For example, Uber drivers report
they pick up customers in the urban canyon, which has low GPS
accuracy [13], so need to be localized for order dispatching.
Ethics and Privacy: The order and smartphone data of couriers
used have been anonymized and were collected by our platform,
which is under the consent agreement of the couriers. In the agree-
ment, the couriers are notified that their data will be collected and
used for analyses to improve delivery efficiency. We obtain their
consent because the couriers work for our platform. We do not
use the GPS information in our dataset to track the detailed trace
of the couriers, but only infer the arrival time of the couriers on
merchants, which also benefits all couriers and customers. Further,
under merchant owners’ agreements, beacon devices only broadcast
Bluetooth signals and did not reveal any personal information.
Data Release for Reproducibility: To encourage research in this
direction, we will release the data to the community.

10 CONCLUSION
In this work, we perform the first study on couriers’ reporting be-
haviors and indoor mobility for instant delivery services. We found
most of their indoor/outdoor reporting behaviors are consistent,
which motivates us to use machine learning models to correct their
indoor reporting behaviors by the outdoor reporting model. Further,
we design a symbolic mobility graph, which captures their indoor
mobility without prior knowledge of the indoor environment. Based
on the experiment results, our system can improve the localiza-
tion accuracy by 64% and 72% compared with the Wi-Fi/GPS-based
method and competitive accuracy with the fingerprinting-based
method. With a case study, our system helps the delivery platform
reduce the courier redundant time by 24%.
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