Who Am I

- Desheng Zhang
 - Assistant Professor
 - Department of Computer Science
 - Rutgers University
 - https://www.cs.rutgers.edu/~dz220/
 - Office: CoRE 307
 - Phone: 848-445-8307
 - Email: d.z@rutgers.edu (including CS352 in your subject!)
My background

1. Bachelor & Master in CS at Heilongjiang University
2. Visiting Student at Shenzhen Institute of Advance Technology
3. Ph.D in Computer Science, University of Minnesota
4. Assistant Professor, Rutgers University
More about me

So, if I am not answering your email during a weekend, I am most likely...
About you

• Talk to your neighbors
 • Introduce yourself to him/her for two minutes
 • maybe you could find your project partner
Outline

- Logistics
- Course Structure
- Introduction of Internet
Class Website

- On Sakai
About this class

• Lectures:
 • Tuesday and Thursdays, 6:40-8:00 pm
 • Location: Science & Engineering Resource Center (SEC) 118

• Office Hours
 • Mon 2:00-3:00pm by appointments at CoRE 307

Recitation: Sec 3 TUE 5:15 to 6:10 pm SEC 203;
 Sec 4 THU 8:25 to 9:20 pm SEC 203;
Sec 3 TA: Sangeeta Chowdhary
 (Email: sc1696@scarletmail.rutgers.edu)
Sec 4 TA: Mohamed Ibrahim
 (Email: mibrahim.ahmed@rutgers.edu)
TA Office Hours: TBD
About this class

• Prerequisites:
 • Required: Computer Architecture (CS 211)
 • Strongly Recommended: System Programming (CS 214)

• Textbook
 • James Kurose and Keith Ross
 • Computer Networking: A Top-Down Approach
 • 7th Edition
Grading

• In-Class Quizzes (5%)
 • 4 or 5
• Written Homeworks (5%)
 • 5
• 2 Mid-terms (15% each) – No electronic devices or notes allowed. No cheat sheets allowed
• Final (30%) – You must send the instructor email at least 2 weeks before the final if you need to take the makeup!
• Project (30%)
 • Part 1 (10%)
 • Part 2 (10%)
 • Part 3 (10%)
Project

• 3 Parts
 • Part 2 is based on Part 1
 • Part 3 is based on Part 2

• Two students as a group
 • Find your partners ASAP

• Python only
 • Recitation will provide an introduction
 • TAs here to help
Questions?
Outline

• Logistics

• Course Structure

• Introduction of Internet
Purpose of this Class

• A thorough understanding:
 • the basic principles of computer networks
 • the design philosophy of the Internet
 • the details of Internet protocols

• Be able to
 • describe in detail the operations of Internet protocols
 • develop their own Internet applications
Key Topics in this class

- Communication Systems
- Internet architecture, protocols and services.
- Web 1.0, web 2.0, web 3.0 and beyond.
- Protocol hierarchy.
- Internet application protocols: SMTP, HTTP, DNS
- Naming protocols and service discovery.
- Network layer and routing algorithms.
- Transport layer.
Key Topics in this class

- Flow, error and congestion control.
- TCP/IP protocols.
- Data link layer.
- Multiple access protocols.
- WIFI and Bluetooth link layer.
- Network security.
- Public Key Systems.
- Emerging network technologies.
- Cloud services.
Schedule of the class

• 14 Weeks

• https://www.cs.rutgers.edu/~dz220/CS352Fall2017.html
Outline

• Logistics

• Course Structure

• Introduction of Internet
Introduction

our goal:
- get “feel” and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

overview:
- what’s the Internet?
- what’s a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history
Roadmap

1.1 what is the Internet?
1.2 network edge
 ▪ end systems, access networks, links
1.3 network core
 ▪ packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security
1.7 history
What’s the Internet: “nuts and bolts” view

- billions of connected computing devices:
 - *hosts* = *end systems*
 - running *network apps*

- *communication links*
 - fiber, copper, radio, satellite
 - transmission rate: *bandwidth*

- *packet switches: forward packets* (chunks of data)
 - *routers* and *switches*
“Fun” Internet-connected devices

- IP picture frame
 http://www.ceiva.com/
- Slingbox: watch, control cable TV remotely
- Web-enabled toaster + weather forecaster
- Tweet-a-watt: monitor energy use
- Internet refrigerator
- Sensorized, bed mattress
- Internet phones

Introduction 1-22
What’s the Internet: “nuts and bolts” view

- **Internet: “network of networks”**
 - Interconnected ISPs

- **Protocols** control sending, receiving of messages
 - e.g., TCP, IP, HTTP, Skype, 802.11

- **Internet standards**
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force
What’s the Internet: a service view

- **infrastructure that provides services to applications:**
 - Web, VoIP, email, games, e-commerce, social nets, …

- **provides programming interface to apps**
 - hooks that allow sending and receiving app programs to “connect” to Internet
 - provides service options, analogous to postal service
What’s a protocol?

human protocols:
- “what’s the time?”
- “I have a question”
- introductions

... specific messages sent
... specific actions taken when messages received, or other events

network protocols:
- machines rather than humans
- all communication activity in Internet governed by protocols

Protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt
What’s a protocol?

A human protocol and a computer network protocol:

Hi
Hi
Got the time?
2:00

TCP connection request
TCP connection response
Get http://www.awl.com/kurose-ross
<file>

time
Chapter 1: roadmap

1.1 what is the Internet?
1.2 network edge
 ▪ end systems, access networks, links
1.3 network core
 ▪ packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security
1.7 history
A closer look at network structure:

- **network edge:**
 - hosts: clients and servers
 - servers often in data centers

- **access networks, physical media:** wired, wireless communication links

- **network core:**
 - interconnected routers
 - network of networks
Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?
Access network: digital subscriber line (DSL)

- Use existing telephone line to central office DSLAM
 - Data over DSL phone line goes to Internet
 - Voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)
Access network: cable network

Frequency division multiplexing: different channels transmitted in different frequency bands
Access network: cable network

- **HFC:** hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate

- **network** of cable, fiber attaches homes to ISP router
 - homes *share access network* to cable headend
 - unlike DSL, which has dedicated access to central office
Access network: home network

- **wireless devices**
- **wireless access point (54 Mbps)**
- **often combined in single box**
- **cable or DSL modem**
- **router, firewall, NAT**
- **wired Ethernet (1 Gbps)**
- **to/from headend or central office**
Enterprise access networks (Ethernet)

- typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

institutional link to ISP (Internet)
institutional router

in institutional mail, web servers

Wireless access networks

- shared *wireless* access network connects end system to router
 - via base station aka “access point”

wireless LANs:

- within building (100 ft.)
- 802.11b/g/n (WiFi): 11, 54, 450 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10’ s km
- between 1 and 10 Mbps
- 3G, 4G: LTE
Host: sends packets of data

host sending function:
- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

\[
\text{packet transmission delay} = \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}
\]
Physical media

- **bit**: propagates between transmitter/receiver pairs
- **physical link**: what lies between transmitter & receiver
- **guided media**:
 - signals propagate in solid media: copper, fiber, coax
- **unguided media**:
 - signals propagate freely, e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps
Physical media: coax, fiber

coaxial cable:
- two concentric copper conductors
- bidirectional

fiber optic cable:
- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
- low error rate:
Physical media: radio

- signal carried in Electromagnetic spectrum
- no physical “wire”
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- **LAN** (e.g., WiFi)
 - 54 Mbps
- **wide-area** (e.g., cellular)
 - 4G cellular: ~ 10 Mbps
- **satellite**
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
Chapter 1: roadmap

1.1 what is the Internet?
1.2 network edge
 ▪ end systems, access networks, links
1.3 network core
 ▪ packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security
1.7 history
The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity
Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- *store and forward*: entire packet must arrive at router before it can be transmitted on next link
- end-end delay = $2L/R$ (assuming zero propagation delay)

one-hop numerical example:
- $L = 7.5$ Mbits
- $R = 1.5$ Mbps
- one-hop transmission delay = 5 sec

more on delay shortly …
Packet Switching: queueing delay, loss

queuing and loss:
- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up
Two key network-core functions

routing: determines source-destination route taken by packets
 - *routing algorithms*

forwarding: move packets from router’s input to appropriate router output

routing

determines source-destination route taken by packets

- *routing algorithms*

forwarding

move packets from router’s input to appropriate router output

Local Forwarding Table

<table>
<thead>
<tr>
<th>Header Value</th>
<th>Output Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>
Alternative core: circuit switching

end-end resources allocated to, reserved for “call” between source & dest:

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call \textit{(no sharing)}
- commonly used in traditional telephone networks
Circuit switching: FDM versus TDM

Example:
4 users

FDM

TDM
Internet structure: network of networks

- End systems connect to Internet via access ISPs (Internet Service Providers)
 - residential, company and university ISPs
- Access ISPs in turn must be interconnected.
 - so that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - evolution was driven by economics and national policies
- Let’s take a stepwise approach to describe current Internet structure
Internet structure: network of networks

Question: given millions of access ISPs, how to connect them together?
Internet structure: network of networks

Option: connect each access ISP to every other access ISP?

connecting each access ISP to each other directly doesn’t scale: $O(N^2)$ connections.
Internet structure: network of networks

Option: connect each access ISP to one global transit ISP?
Customer and provider ISPs have economic agreement.
Internet structure: network of networks

But if one global ISP is viable business, there will be competitors

...
Internet structure: network of networks

But if one global ISP is viable business, there will be competitors …. which must be interconnected
Internet structure: network of networks

... and regional networks may arise to connect access nets to ISPs
Internet structure: network of networks

... and content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end users

Introduction 1-54
Internet structure: network of networks

- At center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - Content provider network (e.g., Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs
Tier-1 ISP: e.g., Sprint

POP: point-of-presence

to/from backbone

peering

to/from customers
Chapter 1: roadmap

1.1 what is the Internet?
1.2 network edge
 - end systems, access networks, links
1.3 network core
 - packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security
1.7 history
How do loss and delay occur?

packets queue in router buffers
- packet arrival rate to link (temporarily) exceeds output link capacity
- packets queue, wait for turn

packet being transmitted (delay)

packets queueing (delay)

free (available) buffers: arriving packets dropped (loss) if no free buffers
Four sources of packet delay

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

- **\(d_{\text{proc}}\): nodal processing**
 - check bit errors
 - determine output link
 - typically < msec

- **\(d_{\text{queue}}\): queueing delay**
 - time waiting at output link for transmission
 - depends on congestion level of router
Four sources of packet delay

- **Transmission delay**:
 - L: packet length (bits)
 - R: link bandwidth (bps)
 - $d_{trans} = L/R$
 - d_{trans} and d_{prop} very different

- **Propagation delay**:
 - d: length of physical link
 - s: propagation speed ($\sim 2 \times 10^8$ m/sec)
 - $d_{prop} = d/s$

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
* Check out the Java applet for an interactive animation on trans vs. prop delay
Caravan analogy

- cars “propagate” at 100 km/hr
- toll booth takes 12 sec to service car (bit transmission time)
- car ~ bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?
- A: 62 minutes

- time to “push” entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr
Caravan analogy (more)

- suppose cars now “propagate” at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- **Q:** Will cars arrive to 2nd booth before all cars serviced at first booth?
 - **A:** Yes! after 7 min, first car arrives at second booth; three cars still at first booth
Queueing delay (revisited)

- R: link bandwidth (bps)
- L: packet length (bits)
- a: average packet arrival rate

- $La/R \sim 0$: avg. queueing delay small
- $La/R \to 1$: avg. queueing delay large
- $La/R > 1$: more “work” arriving than can be serviced, average delay infinite!

* Check online interactive animation on queuing and loss
“Real” Internet delays and routes

- what do “real” Internet delay & loss look like?

- traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.
“Real” Internet delays, routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
8 de2-1.de1.de.geant.net (62.40.96.129) 104 ms 109 ms 106 ms
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2.nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
17 ***
18 *** * means no response (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

* Do some traceroutes from exotic countries at www.traceroute.org
Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

* Check out the Java applet for an interactive animation on queuing and loss
Throughput

- **throughput**: rate (bits/time unit) at which bits transferred between sender/receiver
 - *instantaneous*: rate at given point in time
 - *average*: rate over longer period of time

![Diagram](https://via.placeholder.com/150)

- Server sends bits (fluid) into pipe
- Pipe that can carry fluid at rate R_s bits/sec
- Pipe that can carry fluid at rate R_c bits/sec
Throughput (more)

- $R_s < R_c$ What is average end-end throughput?

- $R_s > R_c$ What is average end-end throughput?

bottleneck link
link on end-end path that constrains end-end throughput
Throughput: Internet scenario

- per-connection end-end throughput: \(\min(R_c, R_s, R/10) \)
- in practice: \(R_c \) or \(R_s \) is often bottleneck

10 connections (fairly) share backbone bottleneck link \(R \) bits/sec

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
Chapter 1: roadmap

1.1 what is the Internet?
1.2 network edge
 ▪ end systems, access networks, links
1.3 network core
 ▪ packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security
1.7 history
Protocol “layers”

Networks are complex, with many “pieces”:

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?
Organization of air travel

- **ticket (purchase)**
- **baggage (check)**
- **gates (load)**
- **runway takeoff**
- **airplane routing**

- **ticket (complain)**
- **baggage (claim)**
- **gates (unload)**
- **runway landing**
- **airplane routing**

- a series of steps
Layering of airline functionality

Layering of airline functionality

<table>
<thead>
<tr>
<th>Layer</th>
<th>Action</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ticket (purchase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>baggage (check)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gates (load)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>runway (takeoff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>airplane routing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>departure airport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermediate air-traffic control centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arrival airport</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

layers: Each layer implements a service
- via its own internal-layer actions
- relying on services provided by layer below
Why layering?

dealing with complex systems:

▪ explicit structure allows identification, relationship of complex system’s pieces
 • layered *reference model* for discussion

▪ modularization eases maintenance, updating of system
 • change of implementation of layer’s service transparent to rest of system
 • e.g., change in gate procedure doesn’t affect rest of system

▪ layering considered harmful?
Internet protocol stack

- **application**: supporting network applications
 - FTP, SMTP, HTTP
- **transport**: process-process data transfer
 - TCP, UDP
- **network**: routing of datagrams from source to destination
 - IP, routing protocols
- **link**: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- **physical**: bits “on the wire”
ISO/OSI reference model

- **presentation**: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- **session**: synchronization, checkpointing, recovery of data exchange
- Internet stack “missing” these layers!
 - these services, *if needed*, must be implemented in application
 - needed?
Encapsulation

source

destination

message
segment
datagram
frame

application
transport
network
link
physical

link
physical

network
link
physical

network
link
physical

switch

router

Introduction 1-77
Chapter 1: roadmap

1.1 what is the Internet?
1.2 network edge
 - end systems, access networks, links
1.3 network core
 - packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security
1.7 history
Network security

- field of network security:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks

- Internet not originally designed with (much) security in mind
 - original vision: “a group of mutually trusting users attached to a transparent network” 😊
 - Internet protocol designers playing “catch-up”
 - security considerations in all layers!
Bad guys: put malware into hosts via Internet

- malware can get in host from:
 - **virus**: self-replicating infection by receiving/executing object (e.g., e-mail attachment)
 - **worm**: self-replicating infection by passively receiving object that gets itself executed

- **spyware malware** can record keystrokes, web sites visited, upload info to collection site

- infected host can be enrolled in **botnet**, used for spam. DDoS attacks
Bad guys: attack server, network infrastructure

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

1. select target
2. break into hosts around the network (see botnet)
3. send packets to target from compromised hosts
Bad guys can sniff packets

packet “sniffing”:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

- wireshark software used for end-of-chapter labs is a (free) packet-sniffer
Bad guys can use fake addresses

IP spoofing: send packet with false source address

![Diagram showing IP spoofing](image)

… lots more on security (throughout, Chapter 8)
Chapter 1: roadmap

1.1 what is the Internet?
1.2 network edge
 - end systems, access networks, links
1.3 network core
 - packet switching, circuit switching, network structure
1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security
1.7 history
Internet history

1961-1972: Early packet-switching principles

- 1961: Kleinrock - queueing theory shows effectiveness of packet-switching
- 1964: Baran - packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational
- 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes
Internet history

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn - architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- Late 70’s: proprietary architectures: DECnet, SNA, XNA
- Late 70’s: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn’s internetworking principles:
- minimalism, autonomy - no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

Define today’s Internet architecture
1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- New national networks: CSnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks
Internet history

1990, 2000’s: commercialization, the Web, new apps

- early 1990’s: ARPAnet decommissioned
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960’s]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990’s: commercialization of the Web

late 1990’s – 2000’s:
- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps
2005-present

- ~5B devices attached to Internet (2016)
 - smartphones and tablets
- aggressive deployment of broadband access
- increasing ubiquity of high-speed wireless access
- emergence of online social networks:
 - Facebook: ~ one billion users
- service providers (Google, Microsoft) create their own networks
 - bypass Internet, providing “instantaneous” access to search, video content, email, etc.
- e-commerce, universities, enterprises running their services in “cloud” (e.g., Amazon EC2)
Introduction: summary

covered a “ton” of material!
- Internet overview
- what’s a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- security
- history

you now have:
- context, overview, “feel” of networking
- more depth, detail to follow!